846 resultados para C53 - Forecasting and Other Model Applications
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
The Travel and Tourism field is undergoing changes due to the rapid development of information technology and digital services. Online travel has profoundly changed the way travel and tourism organizations interact with their customers. Mobile technology such as mobile services for pocket devices (e.g. mobile phones) has the potential to take this development even further. Nevertheless, many issues have been highlighted since the early days of mobile services development (e.g. the lack of relevance, ease of use of many services). However, the wide adoption of smartphones and the mobile Internet in many countries as well as the formation of so-called ecosystems between vendors of mobile technology indicate that many of these issues have been overcome. Also when looking at the numbers of downloaded applications related to travel in application stores like Google Play, it seems obvious that mobile travel and tourism services are adopted and used by many individuals. However, as business is expected to start booming in the mobile era, many issues have a tendency to be overlooked. Travelers are generally on the go and thus services that work effectively in mobile settings (e.g. during a trip) are essential. Hence, the individuals’ perceived drivers and barriers to use mobile travel and tourism services in on-site or during trip settings seem particularly valuable to understand; thus this is one primary aim of the thesis. We are, however, also interested in understanding different types of mobile travel service users. Individuals may indeed be very different in their propensity to adopt and use technology based innovations (services). Research is also switching more from investigating issues of mobile service development to understanding individuals’ usage patterns of mobile services. But designing new mobile services may be a complex matter from a service provider perspective. Hence, our secondary aim is to provide insights into drivers and barriers of mobile travel and tourism service development from a holistic business model perspective. To accomplish the research objectives seven different studies have been conducted over a time period from 2002 – 2013. The studies are founded on and contribute to theories within diffusion of innovations, technology acceptance, value creation, user experience and business model development. Several different research methods are utilized: surveys, field and laboratory experiments and action research. The findings suggest that a successful mobile travel and tourism service is a service which supports one or several mobile motives (needs) of individuals such as spontaneous needs, time-critical arrangements, efficiency ambitions, mobility related needs (location features) and entertainment needs. The service could be customized to support travelers’ style of traveling (e.g. organized travel or independent travel) and should be easy to use, especially easy to take into use (access, install and learn) during a trip, without causing security concerns and/or financial risks for the user. In fact, the findings suggest that the most prominent barrier to the use of mobile travel and tourism services during a trip is an individual’s perceived financial cost (entry costs and usage costs). It should, however, be noted that regulations are put in place in the EU regarding data roaming prices between European countries and national telecom operators are starting to see ‘international data subscriptions’ as a sales advantage (e.g. Finnish Sonera provides a data subscription in the Baltic and Nordic region at the same price as in Finland), which will enhance the adoption of mobile travel and tourism services also in international contexts. In order to speed up the adoption rate travel service providers could consider e.g. more local initiatives of free Wi-Fi networks, development of services that can be used, at least to some extent, in an offline mode (do not require costly network access during a trip) and cooperation with telecom operators (e.g. lower usage costs for travelers who use specific mobile services or travel with specific vendors). Furthermore, based on a developed framework for user experience of mobile trip arrangements, the results show that a well-designed mobile site and/or native application, which preferably supports integration with other mobile services, is a must for true mobile presence. In fact, travel service providers who want to build a relationship with their customers need to consider a downloadable native application, but in order to be found through the mobile channel and make contact with potential new customers, a mobile website should be available. Moreover, we have made a first attempt with cluster analysis to identify user categories of mobile services in a travel and tourism context. The following four categories were identified: info-seekers, checkers, bookers and all-rounders. For example “all-rounders”, represented primarily by individuals who use their pocket device for almost any of the investigated mobile travel services, constituted primarily of 23 to 50 year old males with high travel frequency and great online experience. The results also indicate that travel service providers will increasingly become multi-channel providers. To manage multiple online channels, closely integrated and hybrid online platforms for different devices, supporting all steps in a traveler process should be considered. It could be useful for travel service providers to focus more on developing browser-based mobile services (HTML5-solutions) than native applications that work only with specific operating systems and for specific devices. Based on an action research study and utilizing a holistic business model framework called STOF we found that HTML5 as an emerging platform, at least for now, has some limitations regarding the development of the user experience and monetizing the application. In fact, a native application store (e.g. Google Play) may be a key mediator in the adoption of mobile travel and tourism services both from a traveler and a service provider perspective. Moreover, it must be remembered that many device and mobile operating system developers want service providers to specifically create services for their platforms and see native applications as a strategic advantage to sell more devices of a certain kind. The mobile telecom industry has moved into a battle of ecosystems where device makers, developers of operating systems and service developers are to some extent forced to choose their development platforms.
Resumo:
Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.
Resumo:
In this thesis we study the effect of rest periods in queueing systems without exhaustive service and inventory systems with rest to the server. Most of the works in the vacation models deal with exhaustive service. Recently some results have appeared for the systems without exhaustive service.
Resumo:
This commentary raises general questions about the parsimony and generalizability of the SIMS model, before interrogating the specific roles that the amygdala and eye contact play in it. Additionally, this situates the SIMS model alongside another model of facial expression processing, with a view to incorporating individual differences in emotion perception.
Resumo:
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, > 10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.
Resumo:
Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.
Resumo:
Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.
Resumo:
The effect of the ionosphere on the signals of Global Navigation Satellite Systems (GNSS), such as the Global Positionig System (GPS) and the proposed European Galileo, is dependent on the ionospheric electron density, given by its Total Electron Content (TEC). Ionospheric time-varying density irregularities may cause scintillations, which are fluctuations in phase and amplitude of the signals. Scintillations occur more often at equatorial and high latitudes. They can degrade navigation and positioning accuracy and may cause loss of signal tracking, disrupting safety-critical applications, such as marine navigation and civil aviation. This paper addresses the results of initial research carried out on two fronts that are relevant to GNSS users if they are to counter ionospheric scintillations, i.e. forecasting and mitigating their effects. On the forecasting front, the dynamics of scintillation occurrence were analysed during the severe ionospheric storm that took place on the evening of 30 October 2003, using data from a network of GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers set up in Northern Europe. Previous results [1] indicated that GPS scintillations in that region can originate from ionospheric plasma structures from the American sector. In this paper we describe experiments that enabled confirmation of those findings. On the mitigation front we used the variance of the output error of the GPS receiver DLL (Delay Locked Loop) to modify the least squares stochastic model applied by an ordinary receiver to compute position. This error was modelled according to [2], as a function of the S4 amplitude scintillation index measured by the GISTM receivers. An improvement of up to 21% in relative positioning accuracy was achieved with this technnique.
Resumo:
Includes bibliography