999 resultados para C-Nucleoside


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pd-catalysed reactions of 2-Cl, 2-Br and 2-I derivatives of a 6-chloropurine nucleoside with benzamide have been compared, using Pd2dba3, Xantphos and Cs2CO3 in toluene, between 20 and 80 °C. The reactivity order was 2-I > 2-Br > 6-Cl ≫ 2-Cl. The 2-I substituent could be replaced even at 0 °C, under conditions disclosed here for the first time. On the other hand, the replacement of the chlorine atom at position 2 (2-Cl) required 110 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of 2', 3'-di-O-hexanoyluridine (2) by a Candida antarctica B lipase-catalysed alcoholysis of 2', 3', 5'-tri-O-hexanoyluridine (1) was optimised using an experimental design. At 25 ºC better experimental conditions allowed an increase in the yield of 2 from 80% to 96%. In addition to the yield improvement, the volume reaction could be diminished in a factor of 5 and the reaction time significantly shortened.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Installing hydroxymethyl and hydroxyethyl substitutions at C-4 through vinylation and hydroboration-oxidation reactions of the C-4 bis-hydroxymethyl derivative of D-glucose based substrate, and inserting heteroatoms thereafter permitted formation of N-, O-, or S-heterocycles leading to [4,5]or [5,5]-spirocycles and a bicyclo[3.3.0]octane product. Some of the spirocycles were converted to spironucleosides under Vorbruggen glycosidation reaction conditions. Similarly, the bicyclic product was elaborated to the corresponding bicyclic nucleoside as well as an unexpected tricyclic nucleoside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two targets, reverse transcriptase (RT) and protease from HIV-1, were used during the past two decades to the discovery of non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI) that belong to the arsenal of the antiretroviral therapy. Herein these enzymes were chosen as templates for conducting a computer-aided ligand design. Ligand and structure-based drug designs were the starting points to select compounds from a database bearing more than five million compounds by means of cheminformatic tools. New promising lead structures are retrieved from the database, which are open to acquisition and test. Classes of molecules already described as NNRTI or PI in the literature also came out and were useful to prove the reliability of the workflow, and thus validating the work carried out so far. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic Study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K-i=90muM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design. (C) 2003 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effect on B-cell function. PNP is highly specific for 6-oxopurine nucleosides and exhibits negligible activity for 6-aminopurine nucleosides. The catalytic efficiency for inosine is 350,000-fold greater than for adenosine. Adenine nucleosides and nucleotides are deaminated by adenosine deaminase and AMP deaminase to their corresponding inosine derivatives which, in turn, may be further degraded. Here we report the crystal structures of human PNP in complex with inosine and 2',3'-dideoxymosine, refined to 2.8 Angstrom resolution using synchrotron radiation. The present structures provide explanation for ligand binding, refine the purine-binding site, and can be used for future inhibitor design. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3 Angstrom resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors. (C) 2003 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human purine nucleoside phosphorylase has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Recently, several structures of human PNP have been reported, which allowed redefinition of the active site and understanding of the structural basis for inhibition of PNP by acyclovir and immucillin-H. Based on previously solved human PNP structures, we proposed here a new catalytic mechanism for human PNP, which is supported by crystallographic studies and explains previously determined kinetic data. (C) 2004 Elsevier B.V. All rights reserved.