902 resultados para C-13 NMR-SPECTROSCOPY
Resumo:
Condensation of (-)-norephedrine with excess formaldehyde under mild conditions leads to formation of the 2:1 condensation product N,N'-methylenebis(4-methyl-5-phenyl)oxazolidine compared with the reaction with 1 mol of formaldehyde, which leads to 4-methyl-5-phenyloxazolidine. H-1 and C-13 NMR spectroscopy was used to monitor the stability of this compound and its decomposition products. The 2:1 condensation product is found to be stable in CDC1(3) but breaks down rapidly in CD3OD to yield a 50:50 mixture of 4-methyl-5-phenyloxazolidine and 3-hydroxymethyl-4-methyl-5-phenyloxazolidine. Upon addition of D2O to this equimolar mixture, the latter compound decomposes to norephedrine and formaldehyde, whereas the former compound is stable. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
The zinc and cadmium ethylxanthate complexes of N,N,N',N'-tetramethylethylenediamine (TMEDA), [M(S2COEt)(2)TMEDA], were synthesized and characterized with infrared, H-1 and C-13 NMR spectroscopy, mass spectrometry and X-ray crystallography. Whereas the cadmium complex has a six-coordinate {CdS4N2} centre with bidentate xanthate ligands, the zinc complex contains four coordinate {ZnS2N2} zinc with two monodentate xanthate groups. The cadmium species [Cd(S2COEt)(2)(diamine)] (where diamine = N,N-dimethylethylenediamine or N,N'-diisopropylethylenediamine) were also synthesized. The surfactant-assisted formation of nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA] was studied with TEM, XRD and XRF techniques. From [Cd(S2COEt)(2)], spherical nanoparticle aggregates 140-200 nm in diameter were obtained but from [Cd(S2COEt)(2)TMEDA], single nanoparticles were produced with estimated diameters in the range of 4-7 nm and almost no aggregation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
Extracellular polysaccharides from three Erythroclonium spp. were shown, by a combination of compositional, linkage analyses, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy, to be highly substituted carrageenans with at least five types of repeating disaccharide units. These are the carrabiose 2,4'-disulfate of iota-carrageenan, carrabiose 2-sulfate of alpha-carrageenan, the 6'-O-methylated counterparts of each of these repeating units, and 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. The polysaccharides also contain significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues. The carrageenan preparations of the three species are similar, differing only in the proportions of some components. (C) 1998 Elsevier Science Ltd.
Resumo:
Ten Australian representatives from seven of the 10 genera presently constituting the family Cystolcloniaceae have been analyzed for their cell-wall galactans. Included in our survey are the monotypic Australian-endemic genera Austroclonium, Gloiophyllis, Erythronaema, and Stictosporum, one species of Craspedocarpus, three species of Rhodophyllis, and two species of Calliblepharis. As one of the species of the latter genus is endemic to Western Australia and presently undescribed, we illustrate its habit and anatomical features in formally proposing to name it Calliblepharis celatospora Kraft, sp. nov. All the species surveyed essentially produce typical iota (iota)-carrageenans, with the exception of Austroclonium. The sulfated galactans from Austroclonium predominantly contain the repeating units of iota-, alpha (alpha)-, and 6'-O-methylated iota- and alpha-carrageenans; whether these exist as discrete polysaccharides or a complex hybrid structure was not resolved. Thus, Austroclonium carrageenans resemble the polysaccharides from Rhabdonia, Areschougia, and Erythroclonium. Although these latter three genera are currently included in the large gigartinalean family Solieriaceae, all produce significantly different carrageenans from Solieria itself and related genera such as Eucheuma, Kappaphycus, Betaphycus, Sarcodiotheca, Agardhiella, Sarconema, and Callophycus. In consideration of these findings, as well as of significant anatomical similarities, we provisionally recommend reestablishment of the family Rhabdoniaceae Kylin (as the family Areschougiaceae J. Agardh) for Rhabdonia, Areschougia, Erythroclonium, and Austroclonium.
Resumo:
The carrageenan from two Australian specimens of the red alga Sarconema filiforme was shown by a combination of compositional analyses, linkage analysis, and Fourier transform infrared and C-13 nuclear magnetic resonance spectroscopy to be composed predominantly of a hybrid or mixture of carrabiose 2-sulfate (the repeating unit of alpha-carrageenan), carrabiose 2,4'-disulfate (the repeating unit of iota-carrageenan), and the pyruvated unit 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Solieria, the type genus of the commercially important red algal family Solieriaceae (Gigartinales), contains seven or eight species, three of which are represented in Australia. The cell-wall galactans of the most common Australian Solieria species, S. robusta (Greville) Kylin, were analysed by a combination of compositional assays, linkage analysis, and Fourier transform infrared (FTIR) and C-13 nuclear magnetic resonance (NMR) spectroscopy. They are shown to be composed predominantly of carrabiose 2,4'-disulphate units (the repeating unit of iota-carrageenan) and a significant proportion of 4',6'-pyruvated carrabiose 2-sulphate units. The constituent sugars, pyruvate content, FTIR spectrum, and linkage and substitution patterns of the galactans from Tikvahiella candida Kraft et Gabrielson, an adelphoparasite of Solieria robusta, closely resemble those of its host and furnish evidence in support of a close phylogenetic relationship between the two species.
Resumo:
Polysaccharides from the red alga Phacelocarpos peperocarpos were extracted with hot water, clarified, and precipitated with 2-propanol. The native preparation was highly sulfated (36.2% w/w). Alkali modification decreased the sulfate content by 2.0% w/w. The alkali-modified polysaccharide is composed mostly of galactose (Gal, 51 mol%) and 3,6-anhydrogalactose (AnGal, 41 mol%), with minor amounts of a mono-O-methylgalactose (MeGal, 1 mol%), xylose (Xyl, 6 mol%), and glucose (Glc, 1 mol%). The FTIR spectrum of the alkali-modified polysaccharide resembled K-carrageenan with absorption at 930 cm(-1) (indicative of AnGal) and 850 cm(-1) (Gal ii-sulfate). However, an additional, major band of absorption occurred at 820 cm(-1) indicating the presence of equatorial sulfate ester substitution at O-6 of Gal residues, A combination of linkage and C-13 NMR spectroscopic analyses showed that the polysaccharide was composed predominantly of a novel repeating-unit, O-beta-D-galactopyranosyl 4,6-disulfate)-(1 --> 4)-3,6-anhydro-alpha-D-galactopyranose. Minor structural variations also occurred, including alternative patterns of sulfation and the presence of terminal Xylp, The location of the terminal Xylp residues was not certain but evidence supported their attachment at O-3 of some 4-linked Galp residues. The cell-wall galactans remain unchanged during the life cycle of the alga. (C) 1996 Elsevier Science Ltd.
Resumo:
Cell-wall polysaccharides from six species of red algae of the genus Callophycus were mainly galactans comprised predominantly of galactose (Gal) and 3,6-anhydrogalactose (AnGal), and were rich in pyruvate and sulfate. The Fourier Transform Infrared (FTIR) spectra of the polysaccharides superficially resembled that of alpha-carrageenan (composed of the repeating disaccharide carrabiose 2-sulfate), with major bands of absorption indicative of if-linked AnGal, axial 2-sulfate on 4-linked AnGal, and unsulfated, 3-linked Gal. The FTIR spectra of solutions of Callophycus polysaccharides in D2O-phosphate buffer displayed absorption, corresponding to the carboxylate anion of the pyruvate acetal substituent. Methylation analysis showed that 3,4,6-linked Galp (interpreted as 4,6-pyruvated, 3-linked Galp) and 2,4-linked AnGalp (interpreted as 4-linked AnGalp 2-sulfate) were the dominant links, together with significant quantities of 3-linked Galp. Proton-decoupled C-13 nuclear magnetic resonance (NMR) spectroscopy showed the polysaccharides to be composed predominantly of pyruvated carrageenans. The C-13 NMR spectra were completely assigned by a J-modulated spin-echo pulse sequence and 2D experiments employing gradient Heteronuclear Multiple Bond Correlation (HMBC), C-13/H-1 Heteronuclear Multiple Quantum Coherence (HMQC), and HMQC Total Correlation Spectroscopy (HMQC-TOCSY). The Callophycus galactans thus consist predominantly of the novel repeating disaccharide 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate and minor amounts of the alpha-carrageenan repeating unit (carrabiose 2-sulfate), and other structural variations. (C) 1997 Elsevier Science Ltd.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The bulk free radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N-vinyl-2-pyrrolidone (VP) was carried out to low conversions at 50 degreesC, using benzoyl peroxide (BPO) as initiator. The compositions of the copolymers; were determined using C-13 NMR spectroscopy. The conversion of monomers to polymers was studied using FT-NIR spectroscopy in order to predict the extent of conversion of monomer to polymer. From model fits to the composition data, a statistical F-test revealed that die penultimate model describes die copolymerization better than die terminal model. Reactivity ratios were calculated by using a non-linear least squares analysis (NLLS) and r(H) = 8.18 and r(V) = 0.097 were found to be the best fit values of the reactivity ratios for the terminal model and r(HH) = 12.0, r(VH) = 2.20, r(VV) = 0.12 and r(HV) = 0.03 for the penultimate model. Predictions were made for changes in compositions as a function of conversion based upon the terminal and penultimate models.
Resumo:
The effects of copolymer composition and microstructure on the radiation chemistry of styrene/alkane and alpha-methylstyrene/alkane copolymers have been studied. The primary radical species formed on radiolysis of the copolymers at 77 K, and identified by ESR spectroscopy, are the same as those formed during radiolysis of the homopolymers. The yields of radicals for the copolymer are as predicted assuming that the cross-section is proportional to the electron density of each component; however, there is some evidence of radical migration to aromatic groups at 77 K. Changes in molecular structure on irradiation were detected by using C-13 NMR spectroscopy. Evidence of the consumption of terminal double bonds, and chain scission in alpha-methylstyrene/alkane copolymers was found. Measurements of viscosity supported the mechanism of cross-linking predominating in styrene/alkane copolymers, while in alpha-methylstyrene/alkane copolymers chain scission was the major result of irradiation. (C) 2003 Society of Chemical Industry.
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.