929 resultados para By-environment Interaction
Resumo:
Hypertension (HT) is mediated by the interaction of many genetic and environmental factors. Previous genome-wide linkage analysis studies have found many loci that show linkage to HT or blood pressure (BP) regulation, but the results were generally inconsistent. Gene by environment interaction is among the reasons that potentially explain these inconsistencies between studies. Here we investigate influences of gene by smoking (GxS) interaction on HT and BP in European American (EA), African American (AA) and Mexican American (MA) families from the GENOA study. A variance component-based method was utilized to perform genome-wide linkage analysis of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HT status, as well as bivariate analysis for SBP and DBP for smokers, non-smokers, and combined groups. The most significant results were found for SBP in MA. The strongest signal was for chromosome 17q24 (LOD = 4.2), increased to (LOD = 4.7) in bivariate analysis but there was no evidence of GxS interaction at this locus (p = 0.48). Two signals were identified only in one group: on chromosome 15q26.2 (LOD = 3.37) in non-smokers and chromosome 7q21.11 (LOD = 1.4) in smokers, both of which had strong evidence for GxS interaction (p = 0.00039 and 0.009 respectively). There were also two other signals, one on chromosome 20q12 (LOD = 2.45) in smokers, which became much higher in the combined sample (LOD = 3.53), and one on chromosome 6p22.2 (LOD = 2.06) in non-smokers. Neither peak had very strong evidence for GxS interaction (p = 0.08 and 0.06 respectively). A fine mapping association study was performed using 200 SNPs in 30 genes located under the linkage signals on chromosomes 15 and 17. Under the chromosome 15 peak, the association analysis identified 6 SNPs accounting for a 7 mmHg increase in SBP in MA non-smokers. For the chromosome 17 linkage peak, the association analysis identified 3 SNPs accounting for a 6 mmHg increase in SBP in MA. However, none of these SNPs was significant after correcting for multiple testing, and accounting for them in the linkage analysis produced very small reductions in the linkage signal. ^ The linkage analysis of BP traits considering the smoking status produced very interesting signals for SBP in the MA population. The fine mapping association analysis gave some insight into the contribution of some SNPs to two of the identified signals, but since these SNPs did not remain significant after multiple testing correction and did not explain the linkage peaks, more work is needed to confirm these exploratory results and identify the culprit variations under these linkage peaks. ^
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores
Resumo:
Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to define production environments by grouping different environmental factors and, consequently, to assess genotype by production environment interactions on weaning weight (WW) in the Angus populations of Brazil and Uruguay. Climatic conditions were represented by monthly temperature means (°C), minimum and maximum temperatures in winter and summer respectively and accumulated rainfall (mm/year). Mode in month of birth and weaning, and calf weight (kg) and age (days) at weaning were used as indicators of management conditions of 33 and 161 herds in 13 and 34 regions in Uruguay and Brazil, respectively. Two approaches were developed: (a) a bi-character analysis of extreme sub-datasets within each environmental factor (bottom and top 33% of regions), (b) three different production environments (including farms from both countries) were defined in a cluster analysis using standardized environmental factors. To identify the variables that influenced the cluster formation, a discriminant analysis was previously carried out. Management (month, age and weight at weaning) and climatic factors (accumulated rainfalls and winter and summer temperatures) were the most important factors in the clustering of farms. Bi or trivariate analyses were performed to estimate heritability and genetic correlations for WW in extreme sub-datasets within environmental factor or between clusters, using MTDFREML software. Heritability estimates of WW in the first approach ranged from 0.27 to 0.54, and genetic correlations between top and bottom sub-datasets within environmental factors, from -0.29 to 0.70. In the cluster approach, heritabilities were 0.58±0.04 for cluster 1, 0.31±0.01 for Cluster 2 and 0.40±0.02 for Cluster 3. Genetic correlations were 0.27±0.08, 0.32±0.09 and 0.33±0.09, between clusters 1 and 2, 1 and 3, and 2 and 3, respectively. Both approaches suggest the existence of genotype x environment interaction for weaning weight in Angus breed of Brazil and Uruguay. © 2012 Elsevier B.V.
Resumo:
The aim of this study was to assess the occurrence of genotype-environment interaction, as well as its effects on the magnitude of genetic parameters and the classification of Nellore breeding bulls for the trait adjusted weight at 205 days (W205) on Southern Brazil. The components of (co)variance were estimated by Bayesian inference, using a linear-linear animal model in a bi-trait analysis. The proposed model for the analyses considers as random the direct additive genetic and maternal effects and residual effects, and as fixed effects the contemporary groups, sex, season of birth and weighing, and calving age as covariable (linear and quadratic effects). The a posteriori mean estimates of the direct heritabilities for W205 in the three States varied from 0.24 in Paraná (PR) to 0.34 in Santa Catarina (SC). The estimates of maternal heritability varied from 0.23 in SC and Rio Grande do Sul (RS) to 0.28 in PR. The a posteriori mean distributions of the genetic correlation varied from 0.52 between SC and RS, to 0.84 between PR and RS, suggesting that the best breeding bulls in SC are not the same as in RS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to compare the BLUP selection method with different selection strategies in F-2:4 and assess the efficiency of this method on the early choice of the best common bean (Phaseolus vulgaris) lines. Fifty-one F-2:4 progenies were produced from a cross between the CVIII8511 x RP-26 lines. A randomized block design was used with 20 replications and one-plant field plots. Character data on plant architecture and grain yield were obtained and then the sum of the standardized variables was estimated for simultaneous selection of both traits. Analysis was carried out by mixed models (BLUP) and the least squares method to compare different selection strategies, like mass selection, stratified mass selection and between and within progeny selection. The progenies selected by BLUP were assessed in advanced generations, always selecting the greatest and smallest sum of the standardized variables. Analyses by the least squares method and BLUP procedure ranked the progenies in the same way. The coincidence of the individuals identified by BLUP and between and within progeny selection was high and of the greatest magnitude when BLUP was compared with mass selection. Although BLUP is the best estimator of genotypic value, its efficiency in the response to long term selection is not different from any of the other methods, because it is also unable to predict the future effect of the progenies x environments interaction. It was inferred that selection success will always depend on the most accurate possible progeny assessment and using alternatives to reduce the progenies x environments interaction effect.
Resumo:
It is now generally accepted that complex mental disorders are the results of interplay between genetic and environmental factors. This holds out the prospect that by studying G x E interplay we can explain individual variation in vulnerability and resilience to environmental hazards in the development of mental disorders. Furthermore studying G x E findings may give insights in neurobiological mechanisms of psychiatric disorder and so improve individualized treatment and potentially prevention. In this paper, we provide an overview of the state of field with regard to G x E in mental disorders. Strategies for G x E research are introduced. G x E findings from selected mental disorders with onset in childhood or adolescence are reviewed [such as depressive disorders, attention-deficit/hyperactivity disorder (ADHD), obesity, schizophrenia and substance use disorders]. Early seminal studies provided evidence for G x E in the pathogenesis of depression implicating 5-HTTLPR, and conduct problems implicating MAOA. Since then G x E effects have been seen across a wide range of mental disorders (e.g., ADHD, anxiety, schizophrenia, substance abuse disorder) implicating a wide range of measured genes and measured environments (e.g., pre-, peri- and postnatal influences of both a physical and a social nature). To date few of these G x E effects have been sufficiently replicated. Indeed meta-analyses have raised doubts about the robustness of even the most well studied findings. In future we need larger, sufficiently powered studies that include a detailed and sophisticated characterization of both phenotype and the environmental risk.
Resumo:
Despite current enthusiasm for investigation of gene-gene interactions and gene-environment interactions, the essential issue of how to define and detect gene-environment interactions remains unresolved. In this report, we define gene-environment interactions as a stochastic dependence in the context of the effects of the genetic and environmental risk factors on the cause of phenotypic variation among individuals. We use mutual information that is widely used in communication and complex system analysis to measure gene-environment interactions. We investigate how gene-environment interactions generate the large difference in the information measure of gene-environment interactions between the general population and a diseased population, which motives us to develop mutual information-based statistics for testing gene-environment interactions. We validated the null distribution and calculated the type 1 error rates for the mutual information-based statistics to test gene-environment interactions using extensive simulation studies. We found that the new test statistics were more powerful than the traditional logistic regression under several disease models. Finally, in order to further evaluate the performance of our new method, we applied the mutual information-based statistics to three real examples. Our results showed that P-values for the mutual information-based statistics were much smaller than that obtained by other approaches including logistic regression models.
Resumo:
The purpose of this study was to investigate whether an incongruence between personality characteristics of individuals and concomitant charcteristics of health professional training environments on salient dimensions contributes to aspects of mental health. The dimensions examined were practical-theoretical orientation and the degree of structure-unstructure. They were selected for study as they are particularly important attributes of students and of learning environments. It was proposed that when the demand of the environment is disparate from the proclivities of the individual, strain arises. This strain was hypothesized to contribute to anxiety, depression, and subjective distress.^ Select subscales on the Omnibus Personality Inventory (OPI) were the operationalized measures for the personality component of the dimensions studied. An environmental index was developed to assess students' perceptions of the learning environment on these same dimensions. The Beck Depression Inventory, State-Trait Anxiety Inventory and General Well-Being schedule measured the outcome variables.^ A congruence model was employed to determine person-environment (P-E) interaction. Scores on the scales of the OPI and the environmental index were divided into high, medium, and low based on the range of scores. Congruence was defined as a match between the level of personality need and the complementary level of the perception of the environment. Alternatively, incongruence was defined as a mismatch between the person and the environment. The consistent category was compared to the inconsistent categories by an analysis of variance procedure. Furthermore, analyses of covariance were conducted with perceived supportiveness of the learning environment and life events external to the learning environment as the covariates. These factors were considered critical influences affecting the outcome measures.^ One hundred and eighty-five students (49% of the population) at the College of Optometry at the University of Houston participated in the study. Students in all four years of the program were equally represented in the study. However, the sample differed from the total population on representation by sex, marital status, and undergraduate major.^ The results of the study did not support the hypotheses. Further, after having adjusted for perceived supportiveness and life events external to the learning environment, there were no statistically significant differences between the congruent category and incongruent categories. Means indicated than the study sample experienced significantly lower depression and subjective distress than the normative samples.^ Results are interpreted in light of their utility for future study design in the investigation of the effects of P-E interaction. Emphasized is the question of the feasibility of testing a P-E interaction model with extant groups. Recommendations for subsequent research are proposed in light of the exploratory nature of the methodology. ^
Resumo:
The goal of this study is to better understand the genetic basis of Reading Disability (RD) and Attention Deficit Hyperactivity Disorder (ADHD) by examining molecular G x E interactions with parental education for each disorder. Research indicates that despite sharing genetic risk factors, RD and ADHD are influenced by different types of G x E interactions with parental education - a diathesis stress interaction in the case of ADHD and a bioecological interaction in RD. In order to resolve this apparent paradox, we conducted a preliminary study using behavioral genetic methods to test for G x E interactions in RD and the inattentive subtype of ADHD (ADHD-I) in the same sample of monozygotic and dizygotic Colorado Learning Disabilities Research Center same-sex twin pairs (DeFries et al., 1997), and our findings were consistent with the literature. We posited a genetic hypothesis for this opposite pattern of interactions, which suggests that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. This study sought to further investigate this paradox using molecular genetics methods. We examined multiple candidate genes identified for RD or related language phenotypes and those identified for ADHD for G x E interactions with parental education. The specific aims of this study were as follows: 1) partition known risk alleles for RD and/or related language phenotypes and ADHD-I into those which are pleiotropic and non-pleiotropic by testing each risk allele for association with both RD and ADHD-I, 2) explore the main effects of parental education on both RD and ADHD-I, 3) address G-E correlations, and 4) conduct exploratory G x E interaction analyses in order to test the genetic hypothesis. Analyses suggested a number of pleiotropic genes that influence both RD and ADHD; however, results did not remain after correcting for multiple comparisons. Although exploratory G x E interaction findings were not significant after multiple comparison correction, results suggested a G x E interaction in the bioecological direction with KIAA0319, parental education, and ADHD-I. Given the limited power in the current study, replication of these findings with larger samples is necessary.
Resumo:
The magnitude and nature of genotype-by-environment interactions (G×E) for grain yield (GY) and days to flower (DTF) in Cambodia were examined using a random population of 34 genotypes taken from the Cambodian rice improvement program. These genotypes were evaluated in multi-environment trials (MET) conducted across three years (2000 to 2002) and eight locations in the rainfed lowlands. The G×E interaction was partitioned into components attributed to genotype-by-location (G×L), genotype-by-year (G×Y) and genotype-by-location-by-year (G×L×Y) interactions. The G×L×Y interaction was the largest component of variance for GY. The G×L interaction was also significant and comparable in size to the genotypic component (G). The G×Y interaction was small and non significant. A major factor contributing to the large G×L×Y interactions for GY was the genotypic variation for DTF in combination with environmental variation for the timing and intensity of drought. Some of the interactions for GY associated with timing of plant development and exposure to drought were repeatable across the environments enabling the identification of three-target populations of environments (TPE) for consideration in the breeding program. Four genotypes were selected for wide adaptation in the rainfed lowlands in Cambodia.