1000 resultados para Building stones.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of the decay and conservation of stone-built heritage is a complex one, requiring input across many disciplines to identify appropriate remedial steps and management strategies. Over the past few decades, earth scientists have brought a unique perspective to this challenging area, drawing on traditions and knowledge obtained from research into landscape development and the natural environment. This paper reviews the crucial themes that have arisen particularly, although not exclusively, from the work of physical geographers — themes that have sought to correct common misconceptions held by the public, as well as those directly engaged in construction and conservation, regarding the nature, causes and controls of building stone decay. It also looks to the future, suggesting how the behaviour of building stones (and hence the work of stone decay scientists) might alter in response to the looming challenge of climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.



Relevância:

60.00% 60.00%

Publicador:

Resumo:

The foraminiferal-rich pelagic Bateig Limestone forms several varieties of the important building stones quarried at Bateig Hill in southeastern Spain. Three principal ichnofabrics (Bichordites, mottled-Palaeophycus and mottled-Ophiomorpha) are recognized, which are present in at least two (possibly up to four) repeated successions (cycles). Each succession begins with an erosional event. The Bichordites ichnofabric represents a new type of facies, formed as thin turbidity/grain flow, stratiform units derived from sediment slips off a fault into deep water. Each slipped unit became almost completely bioturbated by infaunal echinoids, colonizing by lateral migration. Because of the thinness of the units, successive colonizations tended to truncate the underlying burrows giving rise to a pseudo-stratification. As the Bichordites ichnofabric accumulated on the fault apron, thus reducing the effective height of the fault scarp, the substrate gradually came under the influence of currents traversing the shelf. This led to a change in hydraulic regime, and to the mottled-Palaeophycus and mottled-Ophiomorpha ichnofabrics in sediment deposited under bed load transport, and associated with laminar and cross-stratified beds and local muddy intervals. Reactivation of the fault triggered erosion and channeling and a return to grain flow sedimentation, and to the Bichordites ichnofabric of the succeeding cycle. The highest unit of the Bateig Limestone is formed entirely of cross-stratified calcarenites with occasional Ophiomorpha (Ophiomorpha-primary lamination ichnofabric) and is similar to many shallow marine facies but they still bear a significant content of pelagic foraminifera. The sedimentary setting bears resemblance with that described for the Pleistocene Monte Torre Paleostrait and the modem Strait of Messina (Italy), where the narrow morphology of the depositional area enhanced tidal currents and allowed for high-energy sandy deposition in relatively deep areas. More data on the Miocene paleogeography of the Bateig area should provide further testing for this hypothesis. The ichnofacies and stacking of the Bateig Limestone differ from the classic Seilacherian model in that they reflect changes in hydraulic process and are associated with faulting and subsidence and changes in sediment supply. Recognition of the unusual ichnofabrics and their relationships provides a clear indication of the overall dynamic setting. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The building fabrics of seven churches situated either on Romney Marsh or the marshland fringe were examined briefly. These revealed important differences in the relative abundance of the two principal building stones. Ragstones from the Hythe Formation occurred more frequently in the northeast, while sandstones from the Ashdown 'Beds' were more common in the west. In the Romney Marsh area, both stones were quarried mainly from their adjoining coastlines, with, up to the thirteenth century, opportunist collection of beach boulders generally preceding the exploitation or hewn stone. Other building stones, possible distribution routes and impacts of the quarrying upon coastline development were also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes index.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Published also as House, Misc. doc. 42, pt. 1-22, 47th Cong., 2d sess.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

State geologist: 1896- William Bullock Clark.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imperfect; wanting the volume entitled, "Paper, by Prof. Archer, Printing, by Joseph Hatton, etc."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vol. 64-66 (1943-1945) lack volume numbering and are complete in 1 number each.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work considers the crystallisation mechanisms of the most common and aggressive salts that generate stress in porous building stones as a result of changing ambient conditions. These mechanisms include the salt crystallisation that result from decreasing relative humidity and changes in temperature and, in hydrated salts, the dissolution of the lower hydrated form and the subsequent precipitation of the hydrated salt. We propose a new methodology for thermodynamic calculations using PHREEQC that includes these crystallisation mechanisms. This approach permits the calculation of the equilibrium relative humidity and the parameterization of the critical relative humidity and crystallisation pressures for the dissolution–precipitation transitions. The influence of other salts on the effectives of salt crystallisation and chemical weathering is also assessed. We review the sodium and magnesium sulphate and sodium chloride systems, in both single and multicomponent solutions, and they are compared to the sodium carbonate and calcium carbonate systems. The variation of crystallisation pressure, the formation of new minerals and the chemical dissolution by the presence of other salts is also evaluated. Results for hydrated salt systems show that high crystallisation pressures are possible as lower hydrated salts dissolve and more hydrated salts precipitate. High stresses may be also produced by decreasing temperature, although it requires that porous materials are wet for long periods of time. The presence of other salts changes the temperature and relative humidity of salt transitions that generates stress rather than reducing the pressure of crystallisation, if any salt has previously precipitated. Several practical conclusions derive from proposed methodology and provide conservators and architects with information on the potential weathering activity of soluble salts. Furthermore, the model calculations might be coupled with projections of future climate to give as improved understanding of the likely changes in the frequency of phase transitions in salts within porous stone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51  W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.