993 resultados para Brain Mapping
Resumo:
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.
Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla.
Resumo:
OBJECTIVE: To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle alpha. MATERIALS AND METHODS: SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for alpha(nominal) = 30 degrees using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. RESULTS: In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. CONCLUSION: At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performance.
Resumo:
Exploring the anatomical and functional connectivities between different regions of the brain (the "Connectome") is a core challenge in neuroscience. While robust methods are available for the adult brain, mapping the connectome in neonates is highly challenging. The purpose of this pilot study is to present a methodological approach for analyzing structural connectivity of a neonate brain and to exploit the MP2RAGE sequence with its advantageous contrast properties
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.
Resumo:
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.
Resumo:
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.
Resumo:
Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.
Resumo:
Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous ("resting-state") neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.
Resumo:
Introduction: The primary somatosensory cortex (SI) contains Brodmann areas (BA) 1, 2, 3a, and 3b. Research in non-human primates showed that BAs 3b, 1, and 2 each contain one full representation of the hand with separate representations for each finger. This research also showed that the finger representation in BA3b has larger and clearer finger somatotopy than BA1 and 2. Although several efforts to map finger somatotopy in SI by fMRI have been made at 1.5 and 3T these studies have yielded variable results and were not able to detect single subject finger somatotopy, probably due to the limited spatial extent of the cortical areas representing a digit (close to the resolution in most fMRI experiments), complications due to acquisition of consistent maps for individual subjects (Schweizer et al 2008), or inter-individual variability in sulcal anatomy impeding group studies. Here, we used 7T fMRI to investigate finger somatotopy in SI, some of its functional characteristics, and its reproducibility. Methods: Eight right-handed male subjects were scanned on a 7T scanner (Siemens Medical, Germany) with an 8-channel Tx/Rx rf-coil (Rapid Biomedical, Germany). 1.3x1.3x1.3mm3 resolution fMRI data were acquired using a sinusoidal readout EPI sequence (Speck et al, 2008) and FOV=210mm, TE/TR=27ms/2.5s, GRAPPA=2. Each volume contained 28 transverse slices covering SI. A single EPI volume with 64 slices was acquired to aid coregistration. 1x1x1mm3 anatomical data were acquire using the MP2RAGE sequence (Marques et al, 2009; TE/TR/TI1,2/TRmprage=2.63ms/7.2ms/0.9,3.2s/5s). Subjects were positioned supine in the scanner with their right arm comfortably against the magnet bore. An experimenter was positioned at the entrance of the bore where he could easily reach and stroke successively the two distal phalanxes of each digit. The order of stroked digit was D1 (thumb)-D3-D5-D2-D4, with 20s ON, 10s OFF alternated. This sequence was repeated four times per run and two functional runs were acquired per subject. Realignment, smoothing (FWHM 2 mm), coregistration of the anatomical to the fMRI data and calculation of t-statistics were done using SPM8. An SI mask was obtained via an F-contrast (p<0.001) over all digits. Within the mask, voxels were labeled with the number of the digit demonstrating the highest t-value for that particular voxel. Results: For all subjects, areas corresponding to the five digits were identified in contralateral SI. BA3b showed the most consistent somatotopic finger representation (see an example in Fig.1). The five digits were localized in a consecutive order in the cortex, with D1 most anterior, inferior and distal and D5, most posterior, superior and medial (mean distance between centres of mass of digit representations ±stderr: 4.2±0.7mm; see Fig. 2). The analysis of average beta values within each finger representation region revealed the specificity of the somatotopic region to the tactile input for each tested finger (except digit 4 and 5). Five of these subjects also presented an orderly and consecutive representation of the five digits in BA1 and 2. Conclusions: Our data reveal that the increased BOLD sensitivity at 7T and the high spatial resolution used in this study allow consistent somatotopic mapping using human touch as a stimulus and that human SI contains at least three separate regions that contain five separate representations of all single contralateral fingers. Moreover, adjacent fingers were represented at adjacent cortical regions across the three SI regions. The spatial organization of SI as reflected in individual subject topography corresponds well with previous electrophysiological data in non-human primates. The small distance between digit representations highlights the need for the high spatial resolution available at 7T.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Resumo:
Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.