953 resultados para Bovine epizootic abortion
Resumo:
Neospora caninum is one of the main causes of abortion and natimortality in cattle. Host immune defense is capable to inhibit tachyzoite activity during acute infection, but there is no action against bradyzoites in tissue cysts. Activation and modulation of this response is controlled by cell mediators. The real-time RT-PCR technique was employed to detect some of those mediators during N. caninum infection. Holstein and Nelore calves intramuscularly infected with tachyzoites and uninfected controls were slaughtered at the sixth day post-infection and popliteal lymph node, liver and brain cortex samples were analyzed. Real-time RT-PCR detected gene expression in all tissues. No significant variation of GAPDH gene expression was detected among groups, its amplification efficiency was similar to the other genes tested and it was used as the endogenous control for the analysis. Comparisons between infected and uninfected groups allowed the relative gene expression quantification. IFN-gamma and TNF-alpha genes showed increased expression in some samples. iNOS and TGF-beta 1 genes had some non-significant variations and IL-4 and IL-10 stayed pratically inaltered.
Resumo:
Bovine abortion represents a major animal welfare issue and a cause of substantial economic loss yet the rate of successful diagnosis remains low. Chlamydia-related organisms including Parachlamydia have recently emerged as putative cattle abortifacients. Placental tissue samples and fetal lung from bovine abortion submissions across Scotland in Spring 2011 were investigated by histopathology for the presence of suspect Chlamydia-related organisms. Evidence of Chlamydia-related organisms was observed in 21/113 (18.6%) placenta samples. Thirteen of the suspect cases and 18 histopathology negative cases were analysed by molecular and immunohistochemical methods. All samples were PCR positive for Parachlamydia but sequencing revealed high homology between identified environmental 16S sequences in all but three cases. Parachlamydial antigen was detected in 10/31 placental samples (32.2%) with pathology consistent with chlamydial infection. This work supports the need for further surveillance investigations and experimental studies to determine the role of Parachlamydia in bovine abortion.
Resumo:
Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of respiratory, reproductive disease and abortion in cattle. Vaccination is widely applied to minimize losses induced by BoHV-1 infections; however, vaccination of dams during pregnancy with modified live virus (MLV) vaccines has been occasionally associated to abortions. We have previously reported the development of a BoHV-1 recombinant virus, constructed with basis on a Brazilian BoHV-1 (Franco et al. 2002a) from which the gene coding for glycoprotein E (gE) was deleted (gE-) by genetic manipulation. Such recombinant has been previously evaluated in its potential as a differential vaccine (gE- vaccine) that allows differentiation between vaccinated and infected animals. Here, in the first part of the present study, the safety of the gE- vaccine during pregnancy was evaluated by the intramuscular inoculation of 10(7.4) tissue culture 50 % infective doses (TCID50) of the virus into 22 pregnant dams (14 BoHV-1 seronegative; 8 seropositive), at different stages of gestation. Other 15 pregnant dams were kept as non-vaccinated controls. No abortions, stillbirths or fetal abnormalities were seen after vaccination. Seroconversion was observed in both groups of previously seronegative vaccinated animals. In the second part of the study, the potential of the gE- vaccine virus to spread among beef cattle under field conditions was examined. Four heifers were inoculated intranasally with a larger amount (10(7,6) TCID50) of the gE- vaccine (to increase chances of transmission) and mixed with other sixteen animals at the same age and body condition, in the same grazing area, at a population density equal to the average cattle farming density within the region (one cattle head per 10,000 m²), for 180 days. All animals were monitored daily for clinical signs. Serum samples were collected on days 0, 30, 60 and 180 post-vaccination. Seroconversion was observed only in vaccinated heifers. These results indicate that, under the conditions of the present study, the gE- vaccine virus did not cause any noticeable harmful effect on pregnant dams and on its offspring and did not spread horizontally among cattle.
Resumo:
Bovine genital campylobacteriosis is a common venereal disease of cattle; the prevalence of this disease can be underestimated mostly because of the nature of the etiological agent, the microaerobic Campylobacter fetus subspecies venerealis. The purpose of the current study was to evaluate the utilization of polymerase chain reaction (PCR) in the diagnosis of genital campylobacteriosis in samples obtained from bull prepuce aspirate, cow cervical mucus, and abomasum contents of aborted fetuses, collected into enrichment medium. Five different DNA extraction protocols were tested: thermal extraction, lysis with proteinase K, lysis with guanidine isothiocyanate, lysis with DNAzol, and lysis with hexadecyltrimethylammonium bromide (CTAB). The specificity, sensitivity, and technical application of the PCR assay were also evaluated with clinical samples and compared to bacterial isolation by standard culture. DNA extraction by the CTAB protocol provided better results in PCR, and it was able to detect 63 colony-forming units per ml of C. fetus. Out of 277 clinical samples tested, 68 (24%) were positive for Campylobacter fetus using PCR, while only 8 (2.8%) of the samples were positive by bacterial isolation in solid medium, proving the superiority of the PCR technique when compared to the standard isolation method, and providing evidence for its usefulness as a better screening test in cattle for the diagnosis of bovine genital campylobacteriosis.
Resumo:
Brucellosis is an important zoonosis of worldwide distribution. Reliable epidemiologic brucellosis data covering approximately 90% of the cattle population in Brazil have been recently published. Therefore, considering the scarcity of information regarding the economic impact of bovine brucellosis in Brazil, the goal of this study was to estimate economic impact of brucellosis on the Brazilian cattle industry. Several parameters including abortion and perinatal mortality rates, temporary infertility, replacement costs, mortality, veterinary costs, milk and meat losses were considered in the model. Bovine brucellosis in Brazil results in an estimated loss of R$ 420,12 or R$ 226,47 for each individual dairy or beef infected female above 24 months of age, respectively. The total estimated losses in Brazil attributed to bovine brucellosis were estimated to be approximately R$ 892 million (equivalent to about 448 million American dollars). Every 1% increase or decrease in prevalence is expected to increase or decrease the economic burden of brucellosis in approximately 155 million Reais.
Resumo:
Bovine Herpesvirus type 5 (BoHV-5) has not been conclusively demonstrated to cause bovine abortion. Brain lesions produced by Neospora caninum and Bovine Herpesvirus type 1 (BoHV-1) exhibit common features. Therefore, careful microscopic evaluation and additional diagnostic procedures are required to achieve an accurate final etiological diagnosis. The aim of the present work was to investigate the occurrence of infections due to BoHV-1, BoHV-5 and N. caninum in 68 cases of spontaneous bovine abortions which showed microscopic lesions in the fetal central nervous system. This study allowed the identification of 4 (5.9%) fetuses with dual infection by BoHV-5 and N. caninum and 33 (48.5%) cases in which N. caninum was the sole pathogen identified. All cases were negative to BoHV-1. The results of this study provide evidence that dual infection by BoHV-5 and N. caninum occur during pregnancy in cattle; however, the role of BoHV-5 as a primary cause of bovine abortion needs further research. Molecular diagnosis of BoHV-5 and N. caninum confirmed the importance of applying complementary assays to improve the sensitivity of diagnosing bovine abortion.
Resumo:
La technique de clonage par transfert nucléaire de cellules somatiques (SCNT) présente une page importante dans les annales scientifiques, mais son application pratique demeure incertaine dû à son faible taux de succès. Les anomalies placentaires et de développement fœtal se traduisent par des pertes importantes de gestation et des mortalités néonatales. Dans un premier temps, la présente étude a caractérisé les changements morphologiques des membranes fœtales durant la gestation clonée en les comparant à des gestations contrôles obtenues à partir de l’insémination artificielle. Les différentes anomalies morphologiques des placentomes telles que l’œdème chorioallantoique, la présence de zones hyperéchoiques et irrégulières dans la membrane amniotique et la présence de cellules inflammatoires dégénérées compromettent le développement fœtal normal de la gestation clonée. L’examen ultrasonographique représente une technique diagnostique importante pour faire le suivi d’une gestation et de caractériser les changements placentaires dans le cadre d’évaluation globale du bien-être fœtal. Le profil hormonal de trois stéroïdes (progestérone (P4), estrone sulfate (E1S), et œstradiol (E2)) et de la protéine B spécifique de gestation (PSPB) dans le sérum des vaches porteuses de clones SCNT a été déterminé et associé aux anomalies de gestations clonées. Une diminution de la P4 sérique au jour 80, une élévation du niveau de la concentration de la PSPB au jour 150, et une augmentation de la concentration d’E2 sérique durant le deuxième et troisième tiers de la gestation clonée coïncident avec les anomalies de gestation déjà reportées. Ces changements du profil hormonal associés aux anomalies phénotypiques du placenta compromettent le déroulement normal de la gestation clonée et gênent le développement et le bien-être fœtal. Sur la base des observations faites sur le placenta de gestation clonée, le mécanisme moléculaire pouvant expliquer la disparition de l’épithélium du placenta (l’interface entre le tissue maternel et le placenta) a été étudié. L’étude a identifié des changements dans l’expression de deux protéines d’adhérence (E-cadhérin et β-catenin) de cellules épithéliales pouvant être associées aux anomalies du placenta chez les gestations clonées. Le tissu de cotylédons provenant de gestations clonées et contrôles a été analysé par Western blot, RT-PCR quantitatif, et par immunohistochimie. Les résultats présentaient une diminution significative (p<0.05) de l’expression des dites protéines dans les cellules trophoblastiques chez les gestations clonées. Le RT-PCR quantitatif démontrait que les gènes CCND1, CLDN1 et MSX1 ciblés par la voie de signalisation de la Wnt/β-catenin étaient significativement sous exprimés. La diminution de l’expression des protéines E-cadherin et β-catenin avec une réduction de l’activation de la protéine β-catenin durant le période d’attachement de l’embryon peut potentiellement expliquer l’absence totale ou partielle de l’attachement des membranes fœtales au tissu maternel et éventuellement, l’insuffisance placentaire caractéristique des gestations clonées chez la vache. La caractérisation morphologique et fonctionnelle du placenta durant les gestations clonées à haut risque est essentielle pour évaluer le statut de la gestation. Les résultats de la présente étude permettront de prédire le développement et le bien-être fœtal de façon critique à travers un protocole standardisé et permettre des interventions médicales pour améliorer le taux de succès des gestations clonées chez les bovins.
Resumo:
A 4.5 yr-old male white-tailed deer (Odocoileus virginianus) killed by a hunter during the 1994 firearm hunting season in northeastern Michigan (USA) had lesions suggestive of tuberculosis and was positive on culture for Mycobacterium bovis the causative agent for bovine tuberculosis. Subsequently, a survey of 354 hunter-harvested white-tailed deer for tuberculosis was conducted in this area from 15 November 1995 through 5 January 1996. Heads and/or lungs from deer were examined grossly and microscopically for lesions suggestive of bovine tuberculosis. Gross lesions suggestive of tuberculosis were seen in 15 deer. Tissues from 16 deer had acid-fast bacilli on histological examination and in 12 cases mycobacterial isolates from lymph nodes and/or lungs were identified as M. bovis. In addition, lymph nodes from 12 deer (11 females and 1 male) without gross or microscopic lesions were pooled into 1 sample from which M. bovis was cultured. Although more male (9) than female (3) deer had bovine tuberculosis infections, this difference was not statistically significant. Mycobacterium bovis culture positive deer ranged in age from 1.5 to 5.5 yr with a mean of 2.7 yr (median 2.5 yr) for males and 3.2 yr (median 3.5 yr) for females. This appears to be the first epidemic occurrence of M. bovis in free-ranging cervids in North America. A combination of environmental (high deer density and poor quality habit) and management-related factors (extensive supplemental feeding) may be responsible for this epizootic.
Resumo:
Background: Placental and fetal growth requires high rates of cellular turnover and differentiation, which contributes to conceptus development. The trophoblast has unique properties and a wide range of metabolic, endocrine and angiogenic functions, but the proliferative profile of the bovine placenta characterized by flow cytometry analysis and its role in fetal development are currently uncharacterized. Complete understanding of placental apoptotic and proliferative rates may be relevant to development, especially if related to the pathogenesis of pregnancy losses and placental abnormalities. Methods: In this study, the proliferation activity and apoptosis in different regions of normal bovine placenta (central and boundary regions of placentomes, placentomal fusion, microplacentomes, and interplacentomal regions), from distinct gestation periods (Days 70 to 290 of pregnancy), were analyzed by flow cytometry. Results: Our results indicated that microplacentomes presented a lower number of apoptotic cells throughout pregnancy, with a higher proliferative activity by the end of gestation, suggesting that such structures do not contribute significantly to normal of placental functions and conceptus development during pregnancy. The placentome edges revealed a higher number of apoptotic cells from Day 170 on, which suggests that placentome detachment may well initiate in this region. Conclusion: Variations involving proliferation and apoptotic rates may influence placental maturation and detachment, compromising placental functions and leading to fetal stress, abnormalities in development and abortion, as frequently seen in bovine pregnancies from in vitro fertilization and cloning procedures. Our findings describing the pattern of cell proliferation and apoptosis in normal bovine pregnancies may be useful for unraveling some of the developmental deviations seen in nature and after in vitro embryo manipulations.
Resumo:
Following an abortion in a beef herd in the summer of 2009, three outbreaks of infectious bovine rhinotracheitis (IBR) were diagnosed in the cantons of Jura and Neuchatel. An epidemiological outbreak investigation was conducted with the aims to identify the source of introduction of the bovine herpes virus 1 (BoHV-1) into the affected herds and to prevent further spread of the disease. The attack rates in the three outbreak farms were 0.89, 0.28 and 0, respectively. BoHV-1 could be isolated from nasal swabs of two animals originating from one of the affected farms. Comparative restriction enzyme analysis revealed slight differences between the isolates of the two animals, but a high similarity to previous BoHV-1 isolates from the canton of Jura, as well as to a French BoHV-1 isolate. This IBR outbreak has shown the importance of reporting and analyzing abortions. The current disease outbreaks recall the main risk factors for the spread of IBR in Switzerland: purchase and movement of bovines and semen of often unknown IBR status.
Resumo:
Neospora caninum ranges among the major causes of infectious abortion in cattle worldwide. The present study was designed to improve the serodiagnostic tools by complementing a conventional ELISA with a highly sensitive and species-specific N. caninum immunoblot. To evaluate this test combination, sera from several groups of cows were tested. The first group, consisting of experimentally infected calves, showed that immunoblot antibody reactivities were detectable 1 to 3 days earlier than those found in ELISA. The first immunodominant bands that appeared were a 29-kDa (NcSAG1) and a 36-kDa (NcSRS2) antigen. Other groups, based upon naturally infected cattle, were used to compare the diagnostic sensitivity of ELISA and immunoblotting. Overall, N. caninum immunoblotting exhibited a higher sensitivity (98%) than ELISA (87%). Conversely, immunoblotting also confirm in two other cases, true transient negativation in some animals. In general, banding patterns and band staining intensity correlated to the semiquantitative ELISA findings. On the other hand, the banding pattern could not be used to discriminate between sera from animals with a recent abortion and those of cows with latent N. caninum infection. We also addressed putative cross-reactions due to infection with Toxoplasma gondii. Sera from animals with a serologically proven T. gondii infection were either clearly negative by Neospora immunoblotting or they yielded a specific immunoblot antibody profile indicating a double infection with N. caninum. Sera from animals with positive findings in both Toxoplasma and Neospora ELISA thus provided dichotomic results in the immunoblot by allowing to confirm or to rule out the specificity of the antibody reaction in Neospora ELISA. Altogether, our findings demonstrate that N. caninum immunoblotting is a very sensitive and specific complementary tool to improve the serology for N. caninum infections in cattle.
Resumo:
Abortion in ruminants is a major cause of economic loss worldwide, and the management and control of outbreaks is important in limiting their spread, and in preventing zoonotic infections. Given that rapid and accurate laboratory diagnosis is central to controlling abortion outbreaks, the submission of tissue samples to laboratories offering the most appropriate tests is essential. Direct antigen and/or DNA detection methods are the currently preferred methods of reaching an aetiological diagnosis, and ideally these results are confirmed by the demonstration of corresponding macroscopic and/or histopathological lesions in the fetus and/or the placenta. However, the costs of laboratory examinations may be considerable and, even under optimal conditions, the percentage of aetiological diagnoses reached can be relatively low. This review focuses on the most commonly occurring and important abortifacient pathogens of ruminant species in Europe highlighting their epizootic and zoonotic potential. The performance characteristics of the various diagnostic methods used, including their specific advantages and limitations, are discussed.
Resumo:
Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.
Resumo:
Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.