960 resultados para Bound-state spectrum
Resumo:
The deuteron binding energy and wave function are calculated by using the recently developed three-dimensional form of low-momentum nucleon-nucleon (NN) interaction. The homogeneous Lippmann-Schwinger equation is solved in momentum space by using the low-momentum two-body interaction, which is constructed from Malfliet-Tjon potential. The results for both, deuteron binding energy and wave function, obtained with low-momentum interaction, are compared with the corresponding results obtained with bare potential. © 2012 Springer-Verlag.
Resumo:
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision.rnThe development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 40 ppt, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Resumo:
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the α-helical content increases from 60–64% to 80–90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 Å2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled α-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
Resumo:
The cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1/Sdi1, important for p53-dependent cell cycle control, mediates G1/S arrest through inhibition of Cdks and possibly through inhibition of DNA replication. Cdk inhibition requires a sequence of approximately 60 amino acids within the p21 NH2 terminus. We show, using proteolytic mapping, circular dichroism spectropolarimetry, and nuclear magnetic resonance spectroscopy, that p21 and NH2-terminal fragments that are active as Cdk inhibitors lack stable secondary or tertiary structure in the free solution state. In sharp contrast to the disordered free state, however, the p21 NH2 terminus adopts an ordered stable conformation when bound to Cdk2, as shown directly by NMR spectroscopy. We have, thus, identified a striking disorder-order transition for p21 upon binding to one of its biological targets, Cdk2. This structural transition has profound implications in light of the ability of p21 to bind and inhibit a diverse family of cyclin-Cdk complexes, including cyclin A-Cdk2, cyclin E-Cdk2, and cyclin D-Cdk4. Our findings suggest that the flexibility, or disorder, of free p21 is associated with binding diversity and offer insights into the role for structural disorder in mediating binding specificity in biological systems. Further, these observations challenge the generally accepted view of proteins that stable secondary and tertiary structure are prerequisites for biological activity and suggest that a broader view of protein structure should be considered in the context of structure-activity relationships.
Resumo:
We report experimental observation of new tightly and loosely bound state vector solitons with locked and precessing states of polarization in a carbon nanotube mode locked fiber laser in the anomalous dispersion regime. ©2013 Optical Society of America.
Resumo:
Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.
Resumo:
A 3-dimensional non-commutative oscillator with no mass term but with an appropriate momentum-dependent potential admits a conserved Runge-Lenz vector, derived from the dual description in momentum space. The trajectories lie on ellipses. The dynamical symmetry allows for an algebraic determination of the bound-state spectrum and extends to o(4,2). (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider three-body systems in two dimensions with zero-range interactions for general masses and interaction strengths. The momentum-space Schrödinger equation is solved numerically and in the Born-Oppenheimer (BO) approximation. The BO expression is derived using separable potentials and yields a concise adiabatic potential between the two heavy particles. The BO potential is Coulomb-like and exponentially decreasing at small and large distances, respectively. While we find similar qualitative features to previous studies, we find important quantitative differences. Our results demonstrate that mass-imbalanced systems that are accessible in the field of ultracold atomic gases can have a rich three-body bound state spectrum in two-dimensional geometries. Small light-heavy mass ratios increase the number of bound states. For 87Rb-87Rb-6Li and 133Cs- 133Cs-6Li we find respectively three and four bound states. © 2013 IOP Publishing Ltd.
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
Resumo:
The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to solving that outstanding problem, our more precise predictions are potentially useful for interpreting future high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
The formation of single-soliton or bound-multisoliton states from a single linearly chirped Gaussian pulse in quasi-lossless and lossy fiber spans is examined. The conversion of an input-chirped pulse into soliton states is carried out by virtue of the so-called direct Zakharov-Shabat spectral problem, the solution of which allows one to single out the radiative (dispersive) and soliton constituents of the beam and determine the parameters of the emerging bound state(s). We describe here how the emerging pulse characteristics (the number of bound solitons, the relative soliton power) depend on the input pulse chirp and amplitude. © 2007 Optical Society of America.
Resumo:
The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.
Resumo:
We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
Resumo:
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.