975 resultados para Bothrops jararacussu snake venom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isolation and biochemical/enzymatic characterization of an L-amino acid oxidase, Balt-LAAO-I, from Bothrops alternates snake venom, is described. Balt-LAAO-I is an acidic glycoprotein, pI similar to 5.37, homodimeric, M-r similar to 123, 000, whose Nterminal sequence is ADVRNPLE EFRETDYEVL. It displays a high specificity toward hydrophobic and basic amino acids, while deglycosylation does not alter its enzymatic activity. Bait-LAAO-I induces platelet aggregation and shows bactericidal activity against Escherichia coli and Staphylococcus aureus. In addition, this enzyme is slightly hemorrhagic and induces edema in the mouse paw. Bait-LAAO-I is a multifunctional enzyme with promising relevant biotechnological and medical applications. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom glands are a rich source of bioactive molecules such as peptides, proteins and enzymes that show important pharmacological activity leading to in local and systemic effects as pain, edema, bleeding and muscle necrosis. Most studies on pharmacologically active peptides and proteins from snake venoms have been concerned with isolation and structure elucidation through methods of classical biochemistry. As an attempt to examine the transcripts expressed in the venom gland of Bothrops jararacussu and to unveil the toxicological and pharmacological potential of its products at the molecular level, we generated 549 expressed sequence tags (ESTs) from a directional cDNA library. Sequences obtained from single-pass sequencing of randomly selected cDNA clones could be identified by similarities searches on existing databases, resulting in 197 sequences with significant similarity to phospholipase A(2) (PLA(2)), of which 83.2% were Lys49-PLA(2) homologs (BOJU-1), 0.1% were basic Asp49-PLA(2)s (BOJU-II) and 0.6% were acidic Asp49-PLA(2)s (BOJU-III). Adjoining this very abundant class of proteins we found 88 transcripts codifying for putative sequences of metalloproteases, which after clustering and assembling resulted in three full-length sequences: BOJUMET-I, BOJUMET-II and BOJUMET-III; as well as 25 transcripts related to C-type lectin like protein including a full-length cDNA of a putative galactose binding C-type lectin and a cluster of eight serine-proteases transcripts including a full-length cDNA of a putative serine protease. Among the full-length sequenced clones we identified a nerve growth factor (Bj-NGF) with 92% identity with a human NGF (NGHUBM) and an acidic phospholipase A2 (BthA-I-PLA(2)) displaying 85-93% identity with other snake venom toxins. Genetic distance among PLA(2)s from Bothrops species were evaluated by phylogenetic analysis. Furthermore, analysis of full-length putative Lys49-PLA(2) through molecular modeling showed conserved structural domains, allowing the characterization of those proteins as group II PLA(2)s. The constructed cDNA library provides molecular clones harboring sequences that can be used to probe directly the genetic material from gland venom of other snake species. Expression of complete cDNAs or their modified derivatives will be useful for elucidation of the structure-function relationships of these toxins and peptides of biotechnological interest. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaP1 is a metalloproteinase isolated from the venom of the Central American snake Bothrops asper (terciopelo). It is a 24 kDa protein consisting of a single chain which includes the metalloproteinase domain only, therefore being classified as a class P-I snake-venom metalloproteinase. BaP1 induces prominent local tissue damage, such as haemorrhage, myonecrosis, blistering, dermonecrosis and oedema. In order to elucidate its structure, BaP1 was crystallized by the hanging-drop vapour-diffusion technique in 0.1 M bicine pH 9.0, 10% PEG 20 000 and 2%(v/v) dioxane. Diffraction data were observed to a resolution of 2.7 Angstrom. Crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 38.22, b = 60.17, c = 86.09 Angstrom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fibrino(geno)lytic nonhemorrhagic metalloprotease (neuwiedase) was purified from Bothrops neuwiedi snake venom by a single chromatographic step procedure on a CM-Sepharose column, Neuwiedase represented 4.5% (w/w) of the crude desiccated venom, with an approximate Mr of 20,000 and pI 5.9, As regards the amino acid composition, neuwiedase showed similarities with other metalloproteases, with high proportions of Asx, Glx, Leu, and Ser, Atomic absorption spectroscopy showed that one mole of Zn2+ and one mole of Ca2+ were present per mole olf protein. The cDNA encoding neuwiedase was isolated by RT-PCR from venom gland RNA, using oligonucleotides based on the partially determined amino-acid sequences of this metalloprotease. The fall sequence contained approximately 594 bp, which codified the 198 amino acid residues with an estimated molecular weight of 22,375. Comparison of the nucleotide and amino acid sequences of neuwiedase with those of other snake venom metalloproteases showed a high level of sequential similarity, Neuwiedase has two highly conserved characteristics sequences H(142)E(143)XXH(146)XXG(140)XXH(152) and C164I165M166. The three-dimensional structure of neuwiedase was modeled based on the crystal structure of Crotalus adamanteus Adamalysin II. This model revealed that the zinc binding site region showed a I high structural similarity with other metalloproteases,, the proteolyitc specificity, using the B beta-chain of oxidized insulin as substrate, was shown to be directed to the Ala(14)-Leu(15) and Tyr(16)-Leu(17) peptide bonds which were preferentially hydrolyzed. Neuwiedase is a A alpha,B beta fibrinogenase, Its activity upon the A alpha chain of fibrinogen was detected within 15 min of incubation. The optimal temperature and pH for the degradation of both A alpha and B beta chains were 37 degrees C and 7.4-8.0, respectively. This activity was inhibited by EDTA and 1,10-phenantroline, Neuwiedase also showed proteolytic activity upon fibrin and some components of the extracellular matrix. However, it did not show TAME esterase activity and was not able to inhibit platelet aggregation. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thrombin-like serine protease, jararassin-I, was isolated from the venom of Bothrops jararaca. The protein was obtained in high yield and purity by a single chromatographic step using the affinity resin Benzamidine-Sepharose CL-6B. SDS-PAGE and dynamic light scattering analyses indicated that the molecular mass of the enzyme was about 30 kD. The enzyme possessed fibrinogenolytic and coagulant activities. The jararassin-I degraded the Bbeta chain of fibrinogen while the Aalpha chain and gammachain were unchanged. Proteases inhibitors, PMSF and benzamidine inhibited the coagulant activity. These results showed jararassin-I is a serine protease similar to coagulating thrombin-like snake venom proteases, but it specifically cleaves Bbeta chain of bovine fibrinogen. Single crystals of enzyme were obtained (0.2 mmx0.2 mmx0.2 mm) and used for X-ray diffraction experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombocytopenia and platelet dysfunction occur in patients bitten by Bothrops sp snakes in Latin America. An experimental model was developed in mice to study the effects of B. asper venom in platelet numbers and function. Intravenous administration of this venom induces rapid and prominent thrombocytopenia and ex vivo platelet hypoaggregation. The drop in platelet numbers was primarily due to aspercetin, a protein of the C-type lectin family which induces von Willebrand factor-mediated platelet aggregation/agglutination. In addition, the effect of class P-III hemorrhagic metalloproteinases on the microvessel wall also contributes to thrombocytopenia since jararhagin, a P-III metalloproteinase, reduced platelet counts. Hypoaggregation was associated with the action of procoagulant and defibrin(ogen)ating proteinases jararacussin-1 (a thrombin-like serine proteinase) and basparin A (a prothrombin activating metalloproteinase). At the doses which induced hypoaggregation, these enzymes caused defibrin(ogen)ation, increments in fibrin(ogen) degradation products and D-dimer and prolongation of the bleeding time. Incubation of B. asper venom with batimastat and α 2-macroglobulin abrogated the hypoaggregating activity, confirming the role of venom proteinases in this effect. Neither aspercetin nor the defibrin(ogen)ating and hypoaggregating components induced hemorrhage upon intravenous injection. However, aspercetin, but not the thrombin-like or the prothrombin-activating proteinases, potentiated the hemorrhagic activity of two hemorrhagic metalloproteinases in the lungs. © 2005 Schattauer GmbH, Stuttgart.