970 resultados para Bose-Fermi mixtures
Resumo:
We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Trapped degenerate dipolar Bose and Fermi gases of the cylindrical symmetry with the polarization vector along the symmetry axis are only stable for the strength of dipolar interaction below a critical value. In the case of bosons, the stability of such a dipolar Bose-Einstein condensate (BEC) is investigated for different strengths of contact and dipolar interactions using a variational approximation and a numerical solution of a mean-field model. In the disc shape, with the polarization vector perpendicular to the plane of the disc, the atoms experience an overall dipolar repulsion and this fact should contribute to the stability. However, a complete numerical solution of the dynamics leads to the collapse of a strongly disc-shaped dipolar BEC due to the long-range anisotropic dipolar interaction. In the case of fermions, the stability of a trapped single-component degenerate dipolar Fermi gas is studied including the Hartree-Fock exchange and Brueckner-Goldstone correlation energies in the local-density approximation valid for a large number of atoms. Estimates for the maximum allowed number of polar Bose and Fermi molecules in the BEC and degenerate Fermi gas are given. © 2013 IOP Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.
Resumo:
We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628
Resumo:
Bose-Einstein condensation (BEC) in two dimensions (2D) (e.g., to describe the quasi-2D cuprates) is suggested as the possible mechanism widely believed to underlie superconductivity in general. A crucial role is played by nonzero center-of-mass momentum Cooper pairs (CPs) usually neglected in BCS theory. Also vital is the unique linear dispersion relation appropriate to weakly-coupled bosonic CPs moving in the Fermi sea-rather than in vacuum where the dispersion would be quadratic but only for very strong coupling, and for which BEC is known to be impossible in 2D.
Resumo:
Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)