991 resultados para Borderlands -- California, Southern


Relevância:

80.00% 80.00%

Publicador:

Resumo:

v.15 (1968-1969)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

v.13 (1962-1964)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vols. for 1943-44-1944-45 combined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cenozoic extension in western Mexico has been divided into two episodes separated by the change from convergence to oblique divergence at the plate boundary. The Gulf Extensional Province is thought to have started once subduction ended at ~12.5 Ma whereas early extension is classified as Basin and Range. Mid-Miocene volcanism of the Comondú group has been considered as a subduction-related arc, whereas post ~12.5 Ma volcanism would be extension-related. Our new integration of the continental onshore and offshore geology of the south-east Gulf region, backed by tens of Ar-Ar and U-Pb ages and geochemical studies, document an early-mid Miocene rifting and extension-related bimodal to andesitic magmatism prior to subduction termination. Between ~21 and 11 Ma a system of NNW-SSE high-angle extensional faults rifted the western side of the Sierra Madre Occidental (SMO) ignimbrite plateau. In Nayarit, rhyolitic domes and some basalts were emplaced along this extensional belt at 18-17 Ma. These rocks show strong antecrystic inheritance but an absence of Mesozoic and older xenocrysts, suggesting a genesis in the mid-upper crust triggered by extension-induced basaltic influx. In Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15 Ma. Mid-Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California, was thus emplaced in rift basins and appears associated to decompression melting rather than subduction. Along the coast, flat-lying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here crustal thickness is 25-20 Km, almost half that in the core of the SMO, implying significant lithosphere stretching before ~11 Ma. This mafic pulse, with relatively high Ti but still clear Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing asthenosphere to flow into parts of the mantle previously fluxed by subduction fluids. Very uniform OIB-like lavas appear in late Pliocene and Pleistocene, only 18 m.y. after the onset of rifting and ~9 m.y. after the end of subduction. Our study shows that rifting began much earlier than Late Miocene and progressively overwhelmed subduction in generating magmatism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the link between tectonic-driven extensional faulting and volcanism is crucial from a hazard perspective in active volcanic environments, while ancient volcanic successions provide records on how volcanic eruption styles, compositions, magnitudes and frequencies can change in response to extension timing, distribution and intensity. This study draws on intimate relationships of volcanism and extension preserved in the Sierra Madre Occidental (SMO) and Gulf of California (GoC) regions of western Mexico. Here, a major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a dominantly bimodal and mixed effusive-explosive volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Rhyolitic dome fields were emplaced along graben edges and at intersections of cross-graben and graben-parallel structures during early stages of graben development. Concomitant with this change in rhyolite eruption style was a change in crustal source as revealed by zircon chronochemistry with rapid rates of rhyolite magma generation due to remelting of mid- to upper crustal, highly differentiated igneous rocks emplaced during earlier SMO magmatism. Extension became more focused ~18 Ma resulting in volcanic activity being localised along the site of GoC opening. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. This compositional change resulted from increased mixing of basaltic and rhyolitic magmas rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate. A poor understanding of space-time relationships of volcanism and extension has thus led to incorrect past tectonic interpretations of Comondú-age volcanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Verso: "Er sinnt in der Wueste"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are seven strong earthquakes with M >= 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3 degrees 3 degrees, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the theory of LURR and its recent development, spatial and temporal variation of Y/Y-c (value of LURR/critical value of LURR) in the Southern California region during the period from 1980 through March, 2001 was studied. According to the previous study on the fault system and stress field in Southern California, we zoned the Southern California region into 11 parts in each of which the stress field is almost uniform. With the time window of one year, time moving step of three months, space window of a circle region with a radius of 100 km and space moving step of 0.25 degree in latitude and longitude direction, the evolution of Y/Y-c were snapshot. The scanning results show that obvious Y/Y-c anomalies occurred before 5/6 of strong earthquakes considered with a magnitude of 6.5 or greater. The critical regions of Y/Y-c are near the epicenters of the strong earthquakes and the Y/Y-c anomalies occur months to years prior to the earthquakes. The tendency of earthquake occurrence in the California region is briefly discussed on the basis of the examination of Y/Y-c.