985 resultados para Bone Strain
Resumo:
Since 1958, we have studied experimental Chagas' disease (CD) by subcutaneous inoculation of 1,000 blood forms of Trypanosoma cruzi (Y strain) in Balb/C. mice. Evolution of parasitemia remained constant, beginning on the 5th and 6th day of the disease, increasing progressively, achieving a maximum on about the 30th day. After another month, only a few forms were present, and they disappeared from the circulation after the third month, as determined from direct examination of slides and the use of a Neubauer Counting Chamber. These events coincided with the appearance of amastigote nests in the tissues (especially the cardiac ones), starting the first week, and following the Gauss parasitemia curve, but they were not in parallel until the chronic stage. In 1997, we began to note the following changes: Parasites appeared in the circulation during the first week and disappeared starting on the 7th day, and there was a coincident absence of the amastigote nests in the tissues. A careful study verified that young forms in the evolutionary cycle of T. cruzi (epi + amastigotes) began to appear alongside the trypomastigotes in the circulation on the 5th and 7th post-inoculation day. At the same time, rounded, oval, and spindle shapes were seen circulating through the capillaries and sinusoids of the tissues, principally of the hematopoietic organs. Stasis occurs because the diameter of the circulating parasites is greater than the vessels, and this makes them more visible. Examination of the sternal bone marrow revealed young cells with elongated forms and others truncated in the shape of a "C" occupying the internal surface of the blood cells that had empty central portions (erythrocytes?). We hypothesize that there could be a loss of virulence or mutation of the Y strain of Trypanosoma cruzi.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.
Resumo:
Background: Bacteria form a biofilm on the surface of orthopaedic devices, causing persistent and infection. Little is known about biofilms formation on bone grafts and bone substitutes. We analyzed various representative materials regarding their propensity for biofilm formation caused by Staphylococcus aureus.Methods: As bone graft beta-tricalciumphosphate (b-TCP, CyclOsTM) and as bone substitute a tantalum metal mesh (trabecular metalTM) and PMMA (Pala-cosTM) were investigated. As test organism S. aureus (strain ATCC 29213) was used. Test materials were incubated with bacterial solution of 105 colony-forming units (cfu)/ml at 37°C for 24 h without shaking. After 24 h, the test materials were removed and washed 3 times in normal saline, followed by sonication in 50 ml Ringer solution at 40 kHz for 5 minutes. The resulting sonication fluid was plated in aliquots of 0.1 ml onto aerobe blood agar with 5% sheep blood and incubated at 37°C with 5% CO2 for 24 h. Then, bacterial counts were enumerated and expressed as cfu/ml. All experiments were performed in triplicate to calculate the mean ± standard deviation. The Wilcoxon test was used for statistical calculations.Results: The three investigated materials show a differing specific surface with b-TCB>trabecular metal>PMMA per mm2. S. aureus formed biofilm on all test materials as confirmed by quantitative culture after washing and sonication. The bacterial counts in sonication fluid (in cfu/ml) were higher in b-TCP (5.1 x 106 ± 0.6 x 106) and trabecular metal (3.7 x 106 ± 0.6 x 106) than in PMMA (3.9 x 104 ± 1.8 x 104), p<0.05.Conclusion: Our results demonstrate that about 100-times more bacteria adhere on b-TCP and trabecular metal than on PMMA, reflecting the larger surface of b-TCP and trabecuar metal compared to the one of PMMA. This in-vitro data indicates that bone grafts are susceptible to infection. Further studies are needed to evaluate efficient approaches to prevent and treat infections associated with bone grafts and substitutes, including modification of the surface or antibacterial coating.
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
Purpose: The aim of this study was to evaluate, through fluorescence analysis, the effect that different interimplant distances, after prosthetic restoration, will have on bone remodeling in submerged and nonsubmerged implants restored with a ""platform switch."" Materials and Methods: Fifty-six Ankylos implants were placed 1.5 mm subcrestally in seven dogs. The implants were placed so that two fixed prostheses, with three interimplant contacts separated by 1-mm, 2-mm, and 3-mm distances, could be fabricated for each side of the mandible. The sides and the positions of the groups were selected randomly. To better evaluate bone remodeling, calcein green was injected 3 days before placement of the prostheses at 12 weeks postimplantation. At 3 days before sacrifice (8 weeks postloading), alizarin red was injected. The amounts of remodeled bone within the different interimplant areas were compared statistically before and after loading in submerged and nonsubmerged implants. Results: Statistically significant differences existed in the percentage of remodeled bone seen in the different regions. Mean percentages of remodeled bone in the submerged and nonsubmerged groups, respectively, were as follows: for the 1-mm distance, 23.0% +/- 0.05% and 23.1% +/- 0.03% preloading and 27.0% +/- 0.03% and 25.2% +/- 0.04% postloading, for the 2-mm distance, 18.2% +/- 0.05% and 18.1% +/- 0.04% preloading and 21.3% +/- 0.07% and 19.9% +/- 0.03% postloading, for the 3-mm distance, 18.3% +/- 0.03% and 18.3% +/- 0.03% preloading and 18.8% +/- 0.04% and 19.8% +/- 0.04% postloading, for distal-extension regions, 16.6% +/- 0.02% and 17.4% +/- 0.04% preloading and 17.0% +/- 0.04% and 18.4% +/- 0.04% postloading. Conclusions: Based upon this animal study, loading increases bone formation for submerged or nonsubmerged implants, and the interimplant distance of 1 mm appears to result in more pronounced bone remodeling than the 2-mm or 3-mm distances in implants with a ""platform switch."" INT J ORAL MAXILLOFAC IMPLANTS 2009;24:257-266
Resumo:
The microstructure of the crestal alveolar bone is important for both the maintenance of osseointegration and the location of the gingival soft tissues. The aim of this study was to evaluate and compare the bone microstructure of the alveolar bone and of the interimplant bone in implants inserted at different interimplant distances. The mandibular bilateral premolars of six dogs were extracted, and after 12 weeks, each dog received eight implants, for a total of 48 implants. Two pairs of implants, one for each hemiarch, were separated by 2 mm (group 1) and by 3 mm (group 2). After 12 weeks, the implants received temporary acrylic prostheses. After four more weeks, metallic crowns substituted the temporary prostheses. After an additional 8 weeks the animals were sacrificed and the hemimandibles were removed, dissected, and processed. The longitudinal collagen fiber orientation was 43.2% for the alveolar bone; it was 30.3% for the 2-mm group and 43.9% for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The orientation of transverse collagen fibers was 47.8% for the alveolar bone; it was 37.3% for the 2-mm group and 56.3% for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The marrow spaces were 34.87% for the alveolar bone, 52.3% for the 2-mm group, and 59.9% for the 3-mm group. There was a statistically significant difference between the alveolar bone and the 3-mm group (p < .05). The low mineral density index was 36.29 for the alveolar bone, 46.76 for the 2-mm group, and 17.91 for the 3-mm group. There was a statistically significant difference between the 2-mm and 3-mm groups (p < .05). The high mineral density was 87.57 for the alveolar bone, 72.58 for the 2-mm group, and 84.91 for the 3-mm group. There was a statistically significant difference between the alveolar bone and the 2-mm group (p < .05). The collagen fiber orientation resulted in statistically significant differences in both the 2-mm and 3-mm groups compared with the alveolar bone. The marrow spaces appeared significantly increased in the 3-mm group compared with the alveolar bone. The low mineral density index was significantly higher in the 2-mm group, while the high mineral density index was significantly higher in the alveolar bone. In conclusion, the interimplant distance should not be less than 3 mm.
Resumo:
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study was carried out at Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP, Brazil, and evaluated bone quality in broiler breeders. Twenty-three families of Ross broiler breeders were housed in 5.0-m² pens. The families were comprised of 13 females and one male at the onset of the experimental period. The mean number of females per family was 9.34 at the end of the trial. The feeding program and management followed strain guidelines (Agroceres Ross, 2003). Bone analyses were performed in the right tibia and femur using optical radiographic densitometry at 4, 8, 12, 15, 20, 24, 30, 35, 42, 47 and 52 weeks of rearing. Trap nests were used to collect eggs from the breeders two weeks before and after the evaluation weeks. At each evaluation day, five birds were sacrificed after radiographs were taken and the tibias and femurs were collected to perform the following analyses: fatfree dry matter, ash percentage, bone resistance and Seedor index. Therefore, it was possible to establish correlations between bone quality and eggshell quality. Characteristics of bone quality were highly correlated to each other; on the other hand, there were no correlations between bone quality and external egg quality. In conclusion, there was no effect of egg production on egg quality, possibly because there was no reabsorption of bone minerals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.
Resumo:
Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.