970 resultados para Bo Yang
Resumo:
There are various principles for layout design such as balance, rhythm, unity and harmony, but each principle has often been introduced as a separate concept rather than within an integrated and systematic structure, so that designers and design students have to keep practices for the acquisition of skills. The paper seeks to develop a conceptual framework for a systematic mapping of layout design principles by using Yin and Yang and the Five Elements. Yin and Yang theory explains all natural phenomena with its own conceptual model and facilitates finding harmony and balance between the visual elements in terms of systematic and organic relations. Most common and well-known layout design principles are defined with 10 different resources such as design books and articles, and have been remapped following with the structure of Yin and Yang and the Five Elements. A systematic framework explaining the relationships of design principles was created and 32 design students participated in its efficiency test. The outcome suggests there is a high possibility that the framework can be used in professional fields and design education.
Resumo:
Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background
Resumo:
Robustness of the track allocation problem is rarely addressed in literatures and the obtained track allocation schemes (TAS) embody some bottlenecks. Therefore, an approach to detect bottlenecks is needed to support local optimization. First a TAS is transformed to an executable model by Petri nets. Then disturbances analysis is performed using the model and the indicators of the total trains' departure delays are collected to detect bottlenecks when each train suffers a disturbance. Finally, the results of the tests based on a rail hub linking six lines and a TAS about thirty minutes show that the minimum buffer time is 21 seconds and there are two bottlenecks where the buffer times are 57 and 44 seconds respectively, and it indicates that the bottlenecks do not certainly locate at the area where there is minimum buffer time. The proposed approach can further support selection of multi schemes and robustness optimization.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.