939 resultados para Blunt Cone


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A blunt-nosed hypersonic missile mounted with a forward-facing cavity is a good alternative to reduce the stagnation heating rates. The effects of a forward-racing cavity on heat transfer and aerodynamic coefficients are addressed in this paper. Tests were carried out in hypersonic shock tunnel HST2, at a hypersonic Mach number of 8 using a 41 deg apex-angle blunt cone. The aerodynamic forces on the test model with and without a forward-facing cavity at various angles of attack are measured by using an internally mountable accelerometer force balance system. Heat flux measurements have been carried out on the test model with and without a forward-facing cavity of the entire surface at zero degree angle of attack with platinum sensors. A numerical simulation was also carried out using the computational fluid dynamics code (CFX-Ansys 5.7). An important result of this study is that the smaller cavity diameter has the highest lift-to-drag ratio, whereas the medium cavity has the highest heat flux reduction. Theshock structure around the test model has also been visualized using the Schlieren flow visualization technique. The visualized shock structure and the measured aerodynamic forces on the missile-shaped body with cavity configurations agree well with the axisymmetric numerical simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A single component accelerometer-based force balance is developed, calibrated, and used for high enthalpy applications. Functionality of this force balance, for such applications, is demonstrated for the first time during high enthalpy tests in a newly established free piston-driven shock tunnel, HST3, using a 60 degrees apex angle blunt cone model at 0 degrees angle of incidence. Usefulness of this force balance is also confirmed, for much complicated high enthalpy flow situations, during the drag reduction studies with counterflow supersonic jet from the stagnation point.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120degrees apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments are carried out in a shock tunnel at a nominal Mach number of 5.75 in order to study the effect of concentrated energy deposition on the drag force experienced by a 120° blunt cone. Electrical energy was deposited along the stagnation streamline of the model using a high voltage DC discharge circuit (1.5 – 3.5KW) and the drag force was measured by a single component accelerometer balance. Numerical simulations were also carried complimenting the experiments. These simulations showed a substantial drag reduction (20% ~ 65%) whereas the experiments show no appreciable reduction in drag

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

报道了在JF-10氢氧爆轰驱动高焓激波风洞中开展的再入流场红外辐射实验研究,风洞的试验状态为:驻室总压19.6MPa,总焓15.5MJ/kg,自由流速度约5km/s,实验以锑化铟多元红外成像系统为测量手段,以球头钝锥体为试验模型,测量激波层与近尾流中红外辐射功率的横向分布剖面,试验数据呈现明显的规律性,试验结果表明,激波层内壁面附近的红外辐射功率较小,中间有一区域辐射较大且相对均匀,激波层外缘辐射单调减小;尾流中红外辐射功率在轴线附近的核心区最大,随着离轴线距离的增大而单调减小。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了超音速钝锥绕流的稳定性和转捩点预报的数值计算方法,首先采用Euler方程求解钝锥绕流基本流场,用所得到的物面压力分布作为粘性边界层的外缘压力分布,给出了基本流场的初值;然后应用反迭代法与边界层渐近匹配的方法求解了钝锥边界层的稳定性方程,得到了钝锥边界层转捩数据,该方法可提高计算精度,节约计算时间。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two force balance techniques for use in hypersonic impulse facilities are compared by measuring the drag force on a 30° semi-apex-angle blunt cone model in a hypersonic shock tunnel at a free stream Mach number of 5.75. An accelerometer-based balance and a stress-wave force balance were tested simultaneously on the same model to measure the drag force. It was found that drag force measurements could be made using both techniques in a flow with a 450-μ s test period. The measured drag forces compared well with the theoretical values estimated using Newtonian theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of air and bone interfaces makes the dose distribution for head and neck cancer treatments difficult to accurately predict. This study compared planning system dose calculations using the collapsed-cone convolution algorithm with EGSnrcMonte Carlo simulation results obtained using the Monte Carlo DICOMToolKit software, for one oropharynx, two paranasal sinus and three nodal treatment plans. The difference between median doses obtained from the treatment planning and Monte Carlo calculations was found to be greatest in two bilateral treatments: 4.8%for a retropharyngeal node irradiation and 6.7% for an ethmoid paranasal sinus treatment. These deviations in median dose were smaller for two unilateral treatments: 0.8% for an infraclavicular node irradiation and 2.8% for a cervical node treatment. Examination of isodose distributions indicated that the largest deviations between Monte Carlo simulation and collapsed-cone convolution calculations were seen in the bilateral treatments, where the increase in calculated dose beyond air cavities was most significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual adaptation regulates contrast sensitivity during dynamically changing light conditions (Crawford, 1947; Hecht, Haig & Chase, 1937). These adaptation dynamics are unknown under dim (mesopic) light levels when the rod (R) and long (L), medium (M) and short (S) wavelength cone photoreceptor classes contribute to vision via interactions in shared non-opponent Magnocellular (MC), chromatically opponent Parvocellular (PC) and Koniocellular (KC) visual pathways (Dacey, 2000). This study investigated the time-course of adaptation and post-receptoral pathways mediating receptor specific rod and cone interactions under mesopic illumination. A four-primary photostimulator (Pokorny, Smithson & Quinlan, 2004) was used to independently control the activity of the four photoreceptor classes and their post-receptoral visual athways in human observers. In the first experiment, the contrast sensitivity and time-course of visual adaptation under mesopic illumination were measured for receptoral (L, S, R) and post-receptoral (LMS, LMSR, L-M) stimuli. An incremental (Rapid-ON) sawtooth conditioning pulse biased detection to ON-cells within the visual pathways and sensitivity was assayed relative to pulse onset using a briefly presented incremental probe that did not alter adaptation. Cone.Cone interactions with luminance stimuli (L cone, LMS, LMSR) reduced sensitivity by 15% and the time course of recovery was 25± 5ms-1 (μ ± SEM). PC mediated (+L-M) chromatic stimuli sensitivity loss was less (8%) than for luminance and recovery was slower (μ = 2.95 ± 0.05 ms-1), with KC mediated (S cone) chromatic stimuli showing a high sensitivity loss (38%) and the slowest recovery time (1.6 ± 0.2 ms-1). Rod-Rod interactions increased sensitivity by 20% and the time course of recovery was 0.7 ± 0.2 ms-1 (μ ± SD). Compared to these interaction types, Rod-Cone interactions reduced sensitivity to a lesser degree (5%) and showed the fastest recovery (μ = 43 ± 7 ms-1). In the second experiment, rod contribution to the magnocellular, parvocellular and koniocellular post-receptoral pathways under mesopic illumination was determined as a function of incremental stimulus duration and waveform (rectangular; sawtooth) using a rod colour match procedure (Cao, Pokorny & Smith, 2005; Cao, Pokorny, Smith & Zele, 2008a). For a 30% rod increment, a cone match required a decrease in [L/(L+M)] and an increase in [L+M] and [S/(L+M)], giving a greenish-blue and brighter appearance for probe durations of 75 ms or longer. Probe durations less than 75 ms showed an increase in [L+M] and no change in chromaticity [L/(L+M) or S/(L+M)], uggesting mediation by the MC pathway only for short duration rod stimuli. s We advance previous studies by determining the time-course and nature of photoreceptor specific retinal interactions in the three post-receptoral pathways under mesopic illumination. In the first experiment, the time-course of adaptation for ON cell processing was determined, revealing opponent cell facilitation in chromatic PC and KC pathways. The Rod-Rod and Rod-Cone data identify previously unknown interaction types that act to maintain contrast sensitivity during dynamically changing light conditions and improve the speed of light adaptation under mesopic light levels. The second experiment determined the degree of rod contribution to the inferred post-eceptoral pathways as a function of the temporal properties of the rod signal. r The understanding of the mechanisms underlying interactions between photoreceptors under mesopic illumination has implications for the study of retinal disease. Visual function has been shown to be reduced in persons with age-related maculopathy (ARM) risk genotypes prior to clinical signs of the disease (Feigl, Cao, Morris & Zele, 2011) and disturbances in rod-mediated adaptation have been shown in early phases of ARM (Dimitrov, Guymer, Zele, Anderson & Vingrys, 2008; Feigl, Brown, Lovie-Kitchin & Swann, 2005). Also, the understanding of retinal networks controlling vision enables the development of international lighting standards to optimise visual performance nder dim light levels (e.g. work-place environments, transportation).