957 resultados para Blood group antigens
Resumo:
Although the nature of the blood groups A and B has been comprehensively studied for a long time, it is still unclear as to what exactly is the epitope that is recognized by antibodies having AB specificity, i.e. monoclonal and polyclonal antibodies which are capable of interacting equally well with the antigens GalNAcalpha 1-3(Fucalpha 1-2)Gal (A trisaccharide) and Galalpha 1-3(Fucalpha 1-2)Gal (B trisaccharide), but do not react with their common fragment Fucalpha 1-2Gal. We have supposed that besides Fucalpha 1-2Gal, A and B antigens have one more shared epitope. The trisaccharides A and B are practically identical from the conformational point of view, the only difference being situated at position 2 of Galalpha residue, i.e. trisaccharide A has a NHAc group, whereas trisaccharide B has a hydroxyl group (see formulas). We have hypothesized that the AB-epitope should be situated in the part of the molecule that is opposite to the NHAc group of GalNAc residue. In order to test this hypothesis we have synthesized a polymeric conjugate in such a way that de-N-acetylated A-trisaccharide is attached to a polymer via the nitrogen in position C-2 of the galactosamine residue. In this conjugate the supposed AB-epitope should be maximally accessible for antibodies from the solution, whereas the discrimination site of antigens A and B by the antibodies should be maximally hidden due to the close proximity of the polymer. Interaction with several anti-AB monoclonal antibodies revealed that a part of them really interacted with the synthetic AB-glycotope, thus confirming our hypothesis. Moreover, similar antibodies were revealed in the blood of healthy blood group 0 donors. Analysis of spatial models was performed in addition to identify the hydroxyl groups of Fuc, Galalpha, and Galbeta residues, which are particularly involved in the composition of the AB-glycotope.
Resumo:
The ABO blood group system until recently constituted an insuperable barrier for solid organ transplantation, but cases of heart transplantation in infants and kidney transplantation in adults have been reported, wherein ABO-incompatible grafts have been successful. In 1990, the molecular genetic basis of three major alleles at the ABO locus was elucidated; A and B glycosyltransferases are specified by a variety of functional alleles at this locus. The antibody response to ABH antigens, namely, naturally occurring anti-A/B IgM and IgG isotype agglutinins, are controlled preoperatively by recipient conditioning using plasma exchange, immunoadsorption, and immunosuppressive regimens. We report an O-type patient who accidentally received a B-type cardiac allograft in 1997 who survived for 5 years, dying for an unrelated reason. Over a period of 45 months semiquantitatively we monitored the expression of ABO-type antigens in graft heart vessels using monoclonal antibodies on sections of formalin-fixed, paraffin-embedded biopsies. We observed a progressive change in the antigenic profile of graft endothelial cells from B- to O-type, which was first detected at 1 year posttransplant and most prominent 3 years later, the end of the observation period. No temporal relationship was observed between the transition from B to O expression, the anti-B antibody levels or the immunosuppressive regimen.
Resumo:
A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.
Resumo:
Mode of access: Internet.
Resumo:
We have compared Duffy blood group genotype distribution, as determined by polymerase chain reaction with allele-specific primers, in 68 Plasmodium vivax-infected patients and 59 non-vivax malaria controls from Rondônia, Brazil. Homozygosity for the allele Fy, which abolishes Duffy antigen expression on erythrocytes, was observed in 12% non-vivax controls but in no P. vivax patient. However, no significant association was found between Fy heterozygosity and protection against P. vivax. The Fy x allele, which has recently been associated with very weak erythrocyte expression of Duffy antigen, was not found in local P. vivax patients.
Resumo:
Background: The high polymorphism rate in the human ABO blood group gene seems to be related to susceptibility to different pathogens. It has been estimated that all genetic variation underlying the human ABO alleles appeared along the human lineage, after the divergence from the chimpanzee lineage. A paleogenetic analysis of the ABO blood group gene in Neandertals allows us to directly test for the presence of the ABO alleles in these extinct humans. Results: We have analysed two male Neandertals that were retrieved under controlled conditions at the El Sidron site in Asturias (Spain) and that appeared to be almost free of modern human DNA contamination. We find a human specific diagnostic deletion for blood group O (O01 haplotype) in both Neandertal individuals. Conclusion: These results suggest that the genetic change responsible for the O blood group in humans predates the human and Neandertal divergence. A potential selective event associated with the emergence of the O allele may have therefore occurred after humans separated from their common ancestor with chimpanzees and before the human-Neandertal population divergence.
Resumo:
BACKGROUND AND OBJECTIVES: Microparticles (MPs) are small phospholipid vesicles of less than 1 microm, shed in blood flow by various cell types. These MPs are involved in several biological processes and diseases. MPs have also been detected in blood products; however, their role in transfused patients is unknown. The purpose of this study was to characterize those MPs in blood bank conditions. MATERIALS AND METHODS: Qualitative and quantitative experiments using flow cytometry or proteomic techniques were performed on MPs derived from erythrocytes concentrates. In order to count MPs, they were either isolated by various centrifugation procedures or counted directly in erythrocyte concentrates. RESULTS: A 20-fold increase after 50 days of storage at 4 degrees C was observed (from 3370 +/- 1180 MPs/microl at day 5 to 64 850 +/- 37 800 MPs/microl at day 50). Proteomic analysis revealed changes of protein expression comparing MPs to erythrocyte membranes. Finally, the expression of Rh blood group antigens was shown on MPs generated during erythrocyte storage. CONCLUSIONS: Our work provides evidence that storage of red blood cell is associated with the generation of MPs characterized by particular proteomic profiles. These results contribute to fundamental knowledge of transfused blood products.
Resumo:
We have recently described 95 predicted alpha-helical coiled-coil peptides derived from putative Plasmodium falciparum erythrocytic stage proteins. Seventy peptides recognized with the highest level of prevalence by sera from three endemic areas were selected for further studies. In this study, we sequentially examined antibody responses to these synthetic peptides in two cohorts of children at risk of clinical malaria in Kilifi district in coastal Kenya, in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Antibody levels from 268 children in the first cohort (Chonyi) were assayed against 70 peptides. Thirty-nine peptides were selected for further study in a second cohort (Junju). The rationale for the second cohort was to confirm those peptides identified as protective in the first cohort. The Junju cohort comprised of children aged 1-6 years old (inclusive). Children were actively followed up to identify episodes of febrile malaria in both cohorts. Of the 70 peptides examined, 32 showed significantly (p<0.05) increased antibody recognition in older children and 40 showed significantly increased antibody recognition in parasitaemic children. Ten peptides were associated with a significantly reduced odds ratio (OR) for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and AS202.11) were associated with a significantly reduced OR in both cohorts. LR146 is derived from hypothetical protein PFB0145c in PlasmoDB. Previous work has identified this protein as a target of antibodies effective in antibody dependent cellular inhibition (ADCI). The current study substantiates further the potential of protein PFB0145c and also identifies protein PF11_0424 as another likely target of protective antibodies against P. falciparum malaria
Resumo:
Contexte. Les phénotypes ABO et Rh(D) des donneurs de sang ainsi que des patients transfusés sont analysés de façon routinière pour assurer une complète compatibilité. Ces analyses sont accomplies par agglutination suite à une réaction anticorps-antigènes. Cependant, pour des questions de coûts et de temps d’analyses faramineux, les dons de sang ne sont pas testés sur une base routinière pour les antigènes mineurs du sang. Cette lacune peut résulter à une allo-immunisation des patients receveurs contre un ou plusieurs antigènes mineurs et ainsi amener des sévères complications pour de futures transfusions. Plan d’étude et Méthodes. Pour ainsi aborder le problème, nous avons produit un panel génétique basé sur la technologie « GenomeLab _SNPstream» de Beckman Coulter, dans l’optique d’analyser simultanément 22 antigènes mineurs du sang. La source d’ADN provient des globules blancs des patients préalablement isolés sur papiers FTA. Résultats. Les résultats démontrent que le taux de discordance des génotypes, mesuré par la corrélation des résultats de génotypage venant des deux directions de l’ADN, ainsi que le taux d’échec de génotypage sont très bas (0,1%). Également, la corrélation entre les résultats de phénotypes prédit par génotypage et les phénotypes réels obtenus par sérologie des globules rouges et plaquettes sanguines, varient entre 97% et 100%. Les erreurs expérimentales ou encore de traitement des bases de données ainsi que de rares polymorphismes influençant la conformation des antigènes, pourraient expliquer les différences de résultats. Cependant, compte tenu du fait que les résultats de phénotypages obtenus par génotypes seront toujours co-vérifiés avant toute transfusion sanguine par les technologies standards approuvés par les instances gouvernementales, les taux de corrélation obtenus sont de loin supérieurs aux critères de succès attendus pour le projet. Conclusion. Le profilage génétique des antigènes mineurs du sang permettra de créer une banque informatique centralisée des phénotypes des donneurs, permettant ainsi aux banques de sang de rapidement retrouver les profiles compatibles entre les donneurs et les receveurs.
Resumo:
We previously reported sequence determination of neutral oligosaccharides by negative ion electrospray tandem mass spectrometry on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without the need of derivatization. In the present report, we extend our strategies to sialylated oligosaccharides for analysis of chain and blood group types together with branching patterns. A main feature in the negative ion mass spectrometry approach is the unique double glycosidic cleavage induced by 3-glycosidic substitution, producing characteristic D-type fragments which can be used to distinguish the type 1 and type 2 chains, the blood group related Lewis determinants, 3,6-disubstituted core branching patterns, and to assign the structural details of each of the branches. Twenty mono- and disialylated linear and branched oligosaccharides were used for the investigation, and the sensitivity achieved is in the femtomole range. To demonstrate the efficacy of the strategy, we have determined a novel complex disialylated and monofucosylated tridecasaccharide that is based on the lacto-N-decaose core. The structure and sequence assignment was corroborated by :methylation analysis and H-1 NMR spectroscopy.
Resumo:
Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58 Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Os cães possuem cinco grupos sangüíneos bem estabelecidos, compostos por sete determinantes antigênicos eritrocitários, os quais são denominados de dog erythrocyte antigen (DEA). O grupo DEA 1 (subgrupos 1.1, 1.2 e 1.3) tem sido considerado o mais importante no que se refere às transfusões de sangue. Isto ocorre porque esse grupo possui um alto potencial para estimulação antigênica e, dessa forma, pode estimular a produção de anticorpos se um receptor DEA 1 negativo receber uma transfusão de sangue DEA 1 positivo, levando a uma reação transfusional hemolítica em uma segunda transfusão com hemácias do tipo DEA 1. A freqüência de aparecimento do grupo DEA 1 é bem conhecida em outros países, porém, até então, não havia informações disponíveis sobre o referido grupo no Brasil. No presente estudo, objetivou-se avaliar a prevalência do grupo sangüíneo DEA 1 (subgrupos 1.1 e 1.2) em cães criados no Brasil. Para tanto, 150 cães de raças, sexos e idades diferentes, triados junto ao Hospital Veterinário da FCAV/UNESP, Campus de Jaboticabal, foram submetidos a tipagem sangüínea para o grupo DEA 1 (subgrupos 1.1 e 1.2) canino, utilizando-se reagentes adquiridos comercialmente junto ao Laboratório de Imunoematologia e Sorologia da Universidade de Michigan (EUA). Os resultados obtidos neste ensaio revelaram que a prevalência geral para o grupo DEA 1 é de 91,3%, consideradas as condições e características da população estudada, compreendendo 51,3% de cães do tipo DEA 1.1, 40% de cães do tipo DEA 1.2, e os 8,7% restantes sendo negativos para o referido grupo. A partir das prevalências encontradas, calculou-se que a probabilidade de um cão DEA 1 negativo receber sangue DEA 1.1, em uma primeira transfusão feita ao acaso, é de aproximadamente 4,5%. Sendo assim, este índice reflete um risco potencial para a sensibilização de um receptor DEA 1 negativo, o que deflagraria a produção de anticorpos. Posteriormente, se este mesmo paciente recebesse uma segunda transfusão de sangue, feita ao acaso, a probabilidade de receber hemácias do tipo DEA 1.1 seria de aproximadamente 2,3%, o que representaria o risco potencial de ocorrência de uma reação transfusional hemolítica aguda. Por outro lado, a probabilidade de este cão receber sangue do tipo DEA 1.2 seria cerca de 1,8%, o que levaria a uma reação transfusional menos grave, porém potencialmente prejudicial. No presente estudo, observou-se que o risco potencial para uma reação transfusional é mínimo, quando se trata de um cão mestiço.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Duffy blood group polymorphisms are important in areas where Plasmodium vivax predominates, because this molecule acts as a receptor for this protozoan. In the present study, Duffy blood group genotyping in P. vivax malaria patients from four different Brazilian endemic areas is reported, exploring significant associations between blood group variants and susceptibility or resistance to malaria.Methods: the P. vivax identification was determined by non-genotypic and genotypic screening tests. The Duffy blood group was genotyped by PCR/RFLP in 330 blood donors and 312 malaria patients from four Brazilian Amazon areas. In order to assess the variables significance and to obtain independence among the proportions, the Fisher's exact test was used.Results: the data show a high frequency of the FYA/FYB genotype, followed by FYB/FYB, FYA/FYA, FYA/FYB-33 and FYB/FYB-33. Low frequencies were detected for the FYA/FY(X), FYB/FY(X), FYX/FY(X) and FYB-33/FYB-33 genotypes. Negative Duffy genotype (FYB-33/FYB-33) was found in both groups: individuals infected and non-infected (blood donors). No individual carried the FY(X)/FYB-33 genotype. Some of the Duffy genotypes frequencies showed significant differences between donors and malaria patients.Conclusion: the obtained data suggest that individuals with the FYA/FYB genotype have higher susceptibility to malaria. The presence of the FYB-33 allele may be a selective advantage in the population, reducing the rate of infection by P. vivax in this region. Additional efforts may contribute to better elucidate the physiopathologic differences in this parasite/host relationship in regions endemic for P. vivax malaria, in particular the Brazilian Amazon region.