972 resultados para Block theory (Rock mechanics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Speckle Correlation Method (DSCM) is a useful tool for whole field deformation measurement, and has been applied to analyze the deformation field of rock materials in recent years. In this paper, a Geo-DSCM system is designed and used to analyse the more complicated problems of rock mechanics, such as damage evolution and failure procedure. A weighted correlation equation is proposed to improve the accuracy of displacement measurement on a heterogeneous deformation field. In addition, a data acquisition system is described that can synchronize with the test machine and can capture speckle image at various speeds during experiment. For verification of the Geo-DSCM system, the failure procedure of a borehole rock structure is inspected and the evolution of the deformation localization is analysed. It is shown that the deformation localization generally initializes at the vulnerable area of the rock structure but may develop in a very complicated way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The karsrt erosion engineering geology became a highlight problem in recent years, in particularly, the karst erosion of marlite of Badong formation made the rock mechanics weaken in Three Gorges Reservoir area, which reduces the safety of slope. During the immigrant construction, many high slopes have been formed, whose instabilities problems pose serious threats to the safety of the people and properties. The accidents of the slope failure take place now and then. By testing, it has been found that the karst erosion pattern and dissolution rate of marlite are not weaker than that of the pure limestone. Furthermore, owning to the weathering and unloading, the karst erosion of the marlite will reach certain depth of the slope, which is named infiltrated karst erosion. The karst erosion made the rock mass quality of slope or foundation worse in a large scale. The karst erosion geological disasters, taken place or not, has become the main restrictive factors to the social stability and economic development. Thus the karst erosion process and mechanism of marlite of Badong formation are studied as the main content of this dissertation. The weakening characteristic of rock mass mechanics parameters are studied along with the rock mass structure deformation and failure processes in the course of the karst erosion. At first, the conditions and influencing factors of the karst erosion are analyzed in the investigative region, on the basis of different karst erosion phenomenon of the marlite and different failure modes of slope. Then via indoor the karst erosion tests, it is analyzed that the karst erosion will change the rock mass composition and its structure. Through test, the different karst erosion phenomena between micro and macro have been observed, and the karst erosion mechanism of the marlite has been summarized. Damage theory is introduced to explain the feature of dissolution pore and the law of crack propagation in the marlite. By microscope and the references data, it can be concluded that the karst erosion process can be divided into rock minerals damage and rock structural damage. And the percent of karst erosion volume is named damage factor, which can be used to describe the quantify karst erosion degree of marlite. Through test, the rock mechanical properties in the different period of karst erosion are studied. Based on the damage mechanics theory and the test result, the relation between the karst erosion degree of marlite and weakening degree of mechanical properties is summarized. By numerical simulations, the karst erosive rock mass mechanics is verified. The conclusion is drawn as below: to the rock mass of marlite, the karst erosion damage made mechanics parameters variation, the deformation modulus, cohesion, and inter friction angle reduce as the negative exponent with the increasing of the karst erosion volume, however, the Poisson ratio increases as the positive exponent with the karst erosion volume increasing. It should be noticed that the deduced formulations are limited to the test data and certain conditions. It is suitable to the rock mass parametric weakening process after the karst erosion of marlite in Three Gorges Reservoir area. Based on the failure types of marlite slope in the field, the karst erosion and weathering process of rock mass are analyzed. And the evolution law of deformation and failure of the marlite mass is studied. The main failure feature of the marlite slope is the karst erosive structure subsidence mode in Three Gorges Reservoir area. The karst erosive structure subsidence mode is explained as follows: the rock mass undergoes the synthetic influence, such as weathering, unloading, corrosion, and so on, many pores and cavities have been formed in the rock mass interior, the rock mass quality is worsen and the rock mass structure is changed, and then the inherent structure of rock mass is collapsed under its gravity, therefore, the failure mode of compaction and subsidence take place. Finally, two examples are used to verify the rock mass parameters in Three Gorges Reservoir area, and the relationship between the marlite slope stability and the time of karst erosion is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block theory is an effective method on stability analysis of fractured rigid rock mass. There are a lot of discontinuous planes developed in rock mass of Jinping II hydropower station conveyor tunnel, so the stability of conveyor tunnel is related with whether there are unstable blocks on excavation planes. This paper deals with the stability of conveyor tunnel with stereo-analytical method for block theory on the basis of detailed investigation of rock mass data, and makes judgements on the movable blocks sliding types which are induced by all rock discontinuous planes and every excavation plane of conveyor tunnel. A conclusion is obtained that the sliding type of blocks is mainly single sliding, and a relatively few sliding types of double-sided sliding and vertical block falling; Also, the obvious statistical distribution result on movable blocks in conveyor tunnel indicates that there are a bit more instability blocks in left wall, left and right arches than right wall. In this paper, the stochastic probability model is drawn into block theory to study the sliding probability of key block on the basis of detailed investigation of its rock mass data and the development of the discontinuous planes in rock mass of Jinping II hydropower station conveyor tunnel. And some following conclusions are obtained. The relationship between trace length and the probability of instability of key block is inverse ratio. The probability of 1-3m primary joints are relatively higher. Key block containing joints J2 is relatively stable and the reinforcement of the arch would be crucial in the conveyor tunnel. They are all useful to offer effective reinforcement design and have important engineering values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As we all know, rock-like materials will absolutely show very different mechanical properties under the compressive stress and tensile stress respectively. Similarly, under the dynamic compressive stress or dynamic tensile stress, the characteristics of the dynamics showed by the rock-like materials also have great differences from the mechanical behavior under static force. Studying their similarities and differences in rock mechanics theory and practical engineering will be of great significance. Generally, there are compression modulus of elasticity and tensile modulus of elasticity corresponding to compressive stress state and the tensile stress state in the rock. Both the two kinds of elastic modulus play an extremely important role in calculation of engineering mechanics. Their reliability directly affects the accuracy and reliability of the calculation results of internal stress field and displacement field of engineering rock mass. At present, it is easy to obtain the compression modulus of elasticity in laboratory; but it is very difficult to determine the tensile modulus of elasticity with direct tensile test due to that direct tensile test is difficult to perform in laboratory in general. In order to solve this problem, this thesis invents and develops several indirect test methods to determine the static or dynamic tensile modulus of elasticity of rock-type materials with high reliability and good interoperability. For the static tensile modulus of elasticity, the analytical stress field solution has been given out for the Brazilian disc under the radial and linear concentration load with Airy stress function method. At the same time, the stress field has been modeled for the Brazilian disc test by using the finite element software of ANSYS and ADINA. The analytical stress field solution is verified to be right by comparatively researching the analytical stress field solution and the numerical stress field solution. Based on the analytical stress field solution, this thesis proposes that a strain gauge is pasted at the Brazilian disc center along the direction perpendicular to the applied force to indirectly determine the static tensile modulus of elasticity, and related measurement theory also has been developed. The method proposed here has good feasibility and high accuracy verified by the experimental results. For the dynamic tensile modulus of elasticity, two measuring methods and theories are invented here. The first one is that the Split Hopkinson Pressure Bar is used to attract the Brazilian disc to generate the dynamic load, make the dynamic tensile stress is formed at the Brazilian disc center; and also a strain gauge is pasted at the Brazilian disc center to record the deformation. The second is that, in the Hopkinson effect phenomenon, the reflection tensile stress wave is formed when the shock wave propagates to the free end of cylindrical rock bar and reflect, which can make the rock bar is under dynamic tensile stress state; and some strain gauges are pasted at the appropriate place on the rock bar to record the strain coursed by the tensile or compressive stress wave. At last, the dynamic tensile modulus of elasticity can be determined by the recorded strain and the dynamic tensile stress which can be determined by related theories developed in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The engineering geological properties of Neogene hard clays and related engineering problems are frontiers in the fields of Engineering Geology, Soil Mechanics and Rock Mechanics. Recently, it has been recognized that Neogene hard clay is the intermediate type of material between the soil and the rock. Many aspects of them, such as sampling, testing, calculating and engineering process, are special, which could not be researched by means of theories and methods of traditional Soil Mechanics of Rock Mechanics. In order to get real knowledge and instruct the engineering practice, intersect studying of multiple disciplines, including Engineering Geology, Soil Mechanics and Rock Mechanics, etc., is necessary. Neogene hard clay is one of the important study objects of regional problem rocks & soils in our country, which extensively distributed in China, especially in Eastern China. Taking the related areas along the middle line of the Project of Transferring Water from the South to the North (e.g. Nanyang basin, Fangcheng-Baofeng area and Handan-Yongnian area), South-west of Shandong, Xu-Huai area and Beijing area, etc. as main study areas, the paper divided Neogene hard clays into reduction environment dominated origin and oxidation environment dominated origin, which distributed on areas western and eastern to Mount Taihangshan respectively. Intermediate types are also existed in some areas, which mainly distribute near the edges of depositional basins; they are usually of transitions between diluvial and lacustrine deposits. As to Neogene hard clays from Eastern China, the clay particle content is high, and montmorillonite or illite/montmorillonite turbostratic mineral is the dominating clay mineral. The content of effective montmorillonite is very high in each area, which is the basis for the undesirable engineering properties of Neogene hard clays. For hard clays from the same area, the content of effective montmorillonite in gray-greenish hard clay is much higher than that in purple-brownish or brown-yellowish hard clay, which is the reason why the gray-greenish hard clay usually has outstanding expansive property. On the other hand, purple-brownish or brown-yellowish hard clay has relatively less montmorillonite, so its property is better. All of these prove that the composition (clay mineral) of Neogene hard clay is the control factor for the engineering properties. Neogene hard clays have obvious properties such as fissured, overconsolidated and expansive, which are the main reasons that many engineering problems and geological harzards usually occur in Neogene hard clays. The paper systematically elaborates the engineering properties of Neogene hard clays from Eastern China, analyses the relationships between engineering properties and basic indexes. The author introduces the ANN method into the prediction of engineering property indexes of hard clays, which provides a new way for quantitatively assessment and prediction of engineering property indexes. During investigation in the field, the author found that there exists obvious seam-sheared zone between different hard clays in Miocene Xiacaowan formation in Xu-Huai area. Similar phenomenon also exists near the borderline between Neogene hard clays and underlying coal measures in the Southwest of Shandong province, which could be observed in the cores. The discovery of seam-sheard zone has important theoretical and practical significance for engineering stability analysis and revealing the origin of fissures in Neogene hard clays. The macrostructure, medium structure and microstructure together control the engineering properties of hard clays. The author analyses and summarizes the structural effects on hard clays in detail. The complex of the strength property of hard clays is mostly related to the characteristics of fissures, which is one of the main factors that affect the choice of shear strength parameters. So structure-control theory must be inseparably combined with composition-control theory during the engineering geological and rock/soil mechanics research of hard clays. The engineering properties, such as fissured, overconsolidated and expansive, control the instability of engineering behaviors of Neogene hard clays under the condition of excavation, i.e. very sensitive to the change of existence environment. Based on test data analysis, the author elaborates the effects of engineering environment change on the engineering properties. Taking Nanyang basin as example, the author utilizes FEM to study the effects of various factors on stability of cutting canal slopes, than sets forth the characteristics, development laws and formation mechanism of the deformation and failure of hard clay canal slopes, summarizes the protection and reinforcement principles, as well as the protection and remedy steps. On the basis of comparison of engineering properties of domestic and foreign Neogene muddy deposits, in the view of whole globe and associated with the geological characteristics of China, the paper demonstrates that the intermediate type of the material between the soil and the rock, named "hard clay/soft rock", which can not be separated abruptly, really exists in China. The author has given a preliminary classification based on its geological origin and distribution law, which is very significant for promoting the mixture of Engineering Geology, Soil Mechanics and Rock Mechanics. In the course of large scales engineering construction in China, many engineering experiences and testing data are gained, summarizing these testing results and automatically managing them with computer technology are very necessary. The author develops a software named "Hard Clay-Soft Rock Engineering Geological Information Management and Analysis System (HRGIMS)", realizes the automatic and visual management of geo-engineering information, on the basis of information management, the functions of test data analysis and engineering property prediction are strengthened. This system has well merits for practice and popularization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halfgraben-like depressions have multiple layers of subtle traps, multiple coverings of oil-bearing series and multiple types of reservoirs. But these reservoirs have features of strong concealment and are difficult to explore. For this reason, many scholars contribute efforts to study the pool-forming mechanism for this kind of basins, and establish the basis for reservoir exploration and development. However, further study is needed. This paper takes HuiMin depression as an example to study the pool-forming model for the gentle slope belts of fault-depression lake basins. Applying multi-discipline theory, methods and technologies including sedimentary geology, structural geology, log geology, seismic geology, rock mechanics and fluid mechanics, and furthermore applying the dynamo-static data of oil reservoir and computer means in maximum limitation, this paper, qualitatively and quantitatively studies the depositional system, structural framework, structural evolution, structural lithofacies and tectonic stress field, as well as fluid potential field, sealing and opening properties of controlling-oil faults and reservoir prediction, finally presents a pool-forming model, and develops a series of methods and technologies suited to the reservoir prediction of the gentle slope belt. The results obtained in this paper richen the pool-forming theory of a complex oil-gas accumulative area in the gentle slope belt of a continental fault-depression basin. The research work begins with the study of geometric shape of fracture system, then the structural form, activity stages and time-space juxtaposition of faults with different level and different quality are investigated. On the basis of study of the burial history, subsidence history and structural evolution history, this paper synthesizes the studied results of deposition system, analyses the structural lithofacies of the gentle slope belt in the HuiMing Depression and its controlling roles to oil reservoir in the different structural lithofacies belts in time-space, and presents their evolution patterns. The study of structural stress field and fluid potential field indicates that the stress field has a great change from the Dong Ying stages to nowadays. One marked point among them is that the Dong Ying double peak- shaped nose structures usually were the favorable directional area for oil and gas migration, while the QuDi horst became favorable directional area since the GuanTao stage. Based on the active regular of fractures and the information of crude oil saturation pressure, this paper firstly demonstrates that the pool-forming stages of the LingNan field were prior to the stages of the QuDi field, whici provides new eyereach and thinking for hydrocarbon exploration in the gentle slope belt. The BeiQiao-RenFeng buried hill belt is a high value area with the maximum stress values from beginning to end, thus it is a favorable directional area for oil and gas migration. The opening and sealing properties of fractures are studied. The results obtained demonstrate their difference in the hydrocarbon pool formation. The seal abilities relate not only with the quality, direction and scale of normal stress, with the interface between the rocks of two sides of a fault and with the shale smear factor (SSF), but they relate also with the juxtaposition of fault motion stage and hydrocarbon migration. In the HuiMin gentle slope belt, the fault seal has difference both in different stages, and in different location and depth in the same stage. The seal extent also displays much difference. Therefore, the fault seal has time-space difference. On the basis of study of fault seal history, together with the obtained achievement of structural stress field and fluid potential field, it is discovered that for the pool-forming process of oil and gas in the studied area the fault seal of nowadays is better than that of the Ed and Ng stages, it plays an important role to determine the oil column height and hydrocarbon preservation. However, the fault seal of the Ed and Ng stages has an important influence for the distribution state of oil and gas. Because the influential parameters are complicated and undefined, we adopt SSF in the research work. It well reflects synthetic effect of each parameter which influences fault seal. On the basis of the above studies, three systems of hydrocarbon migration and accumulation, as well as a pool-forming model are established for the gentle slope belt of the HuiMin depression, which can be applied for the prediction of regular patterns of oil-gas migration. Under guidance of the pool-forming geological model for the HuiMin slope belt, and taking seismic facies technology, log constraint evolution technology, pattern recognition of multiple parameter reservoir and discrimination technology of oil-bearing ability, this paper develops a set of methods and technologies suited to oil reservoir prediction of the gentle slope belt. Good economic benefit has been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of rock breaking and chipping due to the TBM cutter disks mechanism in deep tunnels is considered in this paper. The interest stems from the use of TBMs for the excavation of long Trans-Alpine tunnels. Some tests that simulate the disk cutter action at the tunnel face by means of an indenter, acting on a rock specimen are proposed. The rock specimen is confined through a flat-jack and a confinement-free area on one side of the specimen simulates the formation of a groove near the indenter, like it occurs in TBM excavation conditions. Results show a limited influence of the confinement stress versus the thrust increment required for breaking the rock between the indenter and the free side of the specimen. Numerical modelling of the cutter disk action on confined material has also been carried out in order to investigate further aspects of the fracture initiation. Also in this case the importance of the relative position between disk cutter and groove is pointed out. © 2006 Springer-Verlag.