900 resultados para Block Polymers
Resumo:
A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.
Resumo:
Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.
Resumo:
A new class of water-soluble, amphiphilic star block copolymers with a large number of arms was prepared by sequential atom transfer radical polymerization (ATRP) of n-butyl methacrylate (BMA) and poly( ethylene glycol) methyl ether methacrylate (PEGMA). As the macroinitiator for the ATRP, a 2-bromoisobutyric acid functionalized fourth-generation hyperbranched polyester (Boltorn H40) was used, which allowed the preparation of star polymers that contained on average 20 diblock copolymer arms. The synthetic concept was validated by AFM experiments, which allowed direct visualization of single molecules of the multiarm star block copolymers. DSC and SAXS experiments on bulk samples suggested a microphase-separated structure, in agreement with the core-shell architecture of the polymers. SAXS experiments on aqueous solutions indicated that the star block copolymers can be regarded as unimolecular micelles composed of a PBMA core and a diffuse PPEGMA corona. The ability of the polymers to encapsulate and release hydrophobic guests was evaluated using H-1 NMR spectroscopy. In dilute aqueous solution, these polymers act as unimolecular containers that can be loaded with up to 27 wt % hydrophobic guest molecules.
Resumo:
We report ellipsometrically obtained adsorption isotherms for a carefully chosen test liquid on block copolymer films of Kraton G1650, compared with adsorption isotherms on homogeneous films of the constituent polymers. Standard atomic force microscopy images imply the outer surface of Kraton G1650 is chemically patterned on the nanoscale, but this could instead be a reflection of structure buried beneath a 10 nm layer of the lower energy component. Our test liquid was chosen on the basis that it did not dissolve in either component and in addition that it was nonwetting on the lower energy polymer while forming thick adsorbed films on pure substrates of the higher energy component. Our ellipsometry data for Kraton G1650 rule out the presence of segregation by the lower energy constituent to the outer surface, implying a mixed surface consistent with Cassie's law. We discuss implications of our findings and related work for the outer surface structures of block copolymer films.
Nonspherical assemblies generated from polystyrene-b-poly(L-lysine) polyelectrolyte block copolymers
Resumo:
This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results.
Resumo:
An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate-bpolystyrene and poly(2-(dimethyl amino)ethyl methacrylate)-b-polystyrene films prepared via a grafting-from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small-angle X-ray scattering and reflectometry results measurements on a non-grafted polymer are presented.
Resumo:
The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups
Resumo:
We focus this work on the theoretical investigation of the block-copolymer poly [oxyoctyleneoxy-(2,6-dimethoxy-1,4phenylene-1,2-ethinylene-phenanthrene-2,4diyl) named as LaPPS19, recently proposed for optoelectronic applications. We used for that a variety of methods, from molecular mechanics to quantum semiempirical techniques (AMI, ZINDO/S-CIS). Our results show that as expected isolated LaPPS19 chains present relevant electron localization over the phenanthrene group. We found, however, that LaPPS19 could assemble in a pi-stacked form, leading to impressive interchain interaction; the stacking induces electronic delocalization between neighbor chains and introduces new states below the phenanthrene-related absorption; these results allowed us to associate the red-shift of the absorption edge, seen in the experimental results, to spontaneous pi-stack aggregation of the chains. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 885-892, 2010
Resumo:
Nanostructured films comprising a 3-n-propylpyridiniunn silsesquioxane polymer (designated as SiPy(+)Cl(-)) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy(+)Cl(-)/CuTsPc or CuTsPc/SiPy(+)Cl(-) bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO(3)(-) groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy(+)/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.
Resumo:
The structures and association properties of thermosensitive block copolymers of poly(methoxyoligo( ethylene glycol) norbornenyl esters) in D2O were investigated by small angle neutron scattering (SANS). Each block is a comblike polymer with a polynorbornene (PNB) backbone and oligo ethylene glycol (OEG) side chains (one side chain per NB repeat unit). The chemical formula of the block copolymer is (OEG3NB) 79- (OEG6.6NB) 67, where subscripts represent the degree of polymerization (DP) of OEG and NB in each block. The polymer concentration was fixed at 2.0 wt % and the structural changes were investigated over a temperature range between 25 and 68°C. It was found that at room temperature polymers associate to form micelles with a spherical core formed by the block (OEG3NB) 79 and corona formed by the block (OEG6.6NB) 67 and that the shape of the polymer in the corona could be described by the form factor of rigid cylinders. At elevated temperatures, the aggregation number increased and the micelles became more compact. At temperatures around the cloud point temperature (CPT) T ) 60 °C a correlation peak started to appear and became pronounced at 68 °C due to the formation of a partially ordered structure with a correlation length ∼349 Å.
Resumo:
This work describes the synthesis of a new class of rod-coil block copolymers, oligosubstituted shape persistent macrocycles, (coil-ring-coil block copolymers), and their behavior in solution and in the solid state.The coil-ring-coil block copolymers are formed by nanometer sized shape persistent macrocycles based on the phenyl-ethynyl backbone as rigid block and oligomers of polystyrene or polydimethylsiloxane as flexible blocks. The strategy that has been followed is to synthesize the macrocycles with an alcoholic functionality and the polymer carboxylic acids independently, and then bind them together by esterification. The ester bond is stable and relatively easy to form.The synthesis of the shape persistent macrocycles is based on two separate steps. In the first step the building blocks of the macrocycles are connected by Hagiara-Sogonaschira coupling to form an 'half-ring' as precursor, that contains two free acetylenes. In the second step the half-ring is cyclized by forming two sp-sp bonds via a copper-catalyzed Glaser coupling under pseudo-high-dilution conditions. The polystyrene carboxylic acid was prepared directly by siphoning the living anionic polymer chain into a THF solution, saturated with CO2, while the polydimethylsiloxane carboxylic acid was obtained by hydrosilylating an unsaturated benzylester with an Si-H terminated polydimethylsiloxane, and cleavage of the ester. The carbodiimide coupling was found to be the best way to connect macrocycles and polymers in high yield and high purity.The polystyrene-ring-polystyrene block copolymers are, depending on the molecular weight of the polystyrene, lyotropic liquid crystals in cyclohexane. The aggregation behavior of the copolymers in solution was investigated in more detail using several technique. As a result it can be concluded that the polystyrene-ring-polystyrene block copolymers can aggregate into hollow cylinder-like objects with an average length of 700 nm by a combination of shape complementary and demixing of rigid and flexible polymer parts. The resulting structure can be described as supramolecular hollow cylindrical brush.If the lyotropic solution of the polystyrene-ring-polystyrene block copolymers are dried, they remain birefringent indicating that the solid state has an ordered structure. The polydimethylsiloxane-ring-polydimethylsiloxane block copolymers are more or less fluid at room temperature, and are all birefringent (termotropic liquid crystals) as well. This is a prove that the copolymers are ordered in the fluid state. By a careful investigation using electron diffraction and wide-angle X-ray scattering, it has been possible to derive a model for the 3D-order of the copolymers. The data indicate a lamella structure for both type of copolymers. The macrocycles are arranged in a layer of columns. These crystalline layers are separated by amorphous layers which contain the polymers substituents.
Resumo:
The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.
Resumo:
The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.
Resumo:
DNA block copolymer, a new class of hybrid material composed of a synthetic polymer and an oligodeoxynucleotide segment, owns unique properties which can not be achieved by only one of the two polymers. Among amphiphilic DNA block copolymers, DNA-b-polypropylene oxide (PPO) was chosen as a model system, because PPO is biocompatible and has a Tg < 0 °C. Both properties might be essential for future applications in living systems. During my PhD study, I focused on the properties and the structures of DNA-b-PPO molecules. First, DNA-b-PPO micelles were studied by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). In order to control the size of micelles without re-synthesis, micelles were incubated with template-independent DNA polymerase TdT and deoxynucleotide triphosphates in reaction buffer solution. By carrying out ex-situ experiments, the growth of micelles was visualized by imaging in liquid with AFM. Complementary measurements with FCS and polyacrylamide gel electrophoresis (PAGE) confirmed the increase in size. Furthermore, the growing process was studied with AFM in-situ at 37 °C. Hereby the growth of individual micelles could be observed. In contrast to ex-situ reactions, the growth of micelles adsorbed on mica surface for in-situ experiments terminated about one hour after the reaction was initiated. Two reasons were identified for the termination: (i) block of catalytic sites by interaction with the substrate and (ii) reduced exchange of molecules between micelles and the liquid environment. In addition, a geometrical model for AFM imaging was developed which allowed deriving the average number of mononucleotides added to DNA-b-PPO molecules in dependence on the enzymatic reaction time (chapter 3). Second, a prototype of a macroscopic DNA machine made of DNA-b-PPO was investigated. As DNA-b-PPO molecules were amphiphilic, they could form a monolayer at the air-water interface. Using a Langmuir film balance, the energy released owing to DNA hybridization was converted into macroscopic movements of the barriers in the Langmuir trough. A specially adapted Langmuir trough was build to exchange the subphase without changing the water level significantly. Upon exchanging the subphase with complementary DNA containing buffer solution, an increase of lateral pressure was observed which could be attributed to hybridization of single stranded DNA-b-PPO. The pressure versus area/molecule isotherms were recorded before and after hybridization. I also carried out a series of control experiments, in order to identify the best conditions of realizing a DNA machine with DNA-b-PPO. To relate the lateral pressure with molecular structures, Langmuir Blodgett (LB) films were transferred to highly ordered pyrolytic graphite (HOPG) and mica substrates at different pressures. These films were then investigated with AFM (chapter 4). At last, this thesis includes studies of DNA and DNA block copolymer assemblies with AFM, which were performed in cooperation with different group of the Sonderforschungsbereich 625 “From Single Molecules to Nanoscopically Structured Materials”. AFM was proven to be an important method to confirm the formation of multiblock copolymers and DNA networks (chapter 5).