904 resultados para Blink kinematics
Resumo:
This paper describes the kinematics and muscle activity associated with the standard sit-up, as a first step in the investigation of complex motor coordination. Eight normal human subjects lay on a force table and performed at least 15 sit-ups, with the arms across the chest and the legs straight and unconstrained. Several subjects also performed sit-ups with an additional weight added to the head. Support surface forces were recorded to calculate the location of the center of pressure and center of gravity; conventional motion analysis was used to measure segmental positions; and surface EMG was recorded from eight muscles. While the sit-up consists of two serial components, 'trunk curling' and 'footward pelvic rotation', it can be further subdivided into five phases, based on the kinematics. Phases I and II comprise trunk curling. Phase I consists of neck and upper trunk flexion, and phase II consists of lumbar trunk lifting. Phase II corresponds to the point of peak muscle contraction and maximum postural instability, the 'critical point' of the sit-up. Phases III-V comprise footward pelvic rotation. Phase III begins with pelvic rotation towards the feet. phase W with leg lowering, and phase V with contact between the legs and the support surface. The overall pattern of muscle activity was complex with times of EMG onset, peak activity, offset, and duration differing for different muscles. This complex pattern changed qualitatively from one phase to the next, suggesting that the roles of different muscles and, as a consequence, the overall form of coordination, change during the sit-up. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The hypothesis that prepulse inhibition of the blink reflex reflects a transient process that protects preattentive processing of the prepulse was investigated. Participants were presented with pairs of blink-eliciting noises, with some noises preceded by a prepulse, and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110 dB(A) noise than for a 95 dB(A) noise with a 120 ms lead interval, whereas there was no difference with a 30 ms lead interval. The reduction in perceived intensity was greater for the 110 dB(A) noise than for the 95 dB(A) noise with the 120 ms lead interval, but not with the 30 ms lead interval. The parallel results support an association between prepulse inhibition and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the impact of the blink-eliciting stimulus.
Resumo:
When two targets are presented in rapid succession, identification of the first target is nearly perfect while identification of the second is severely impaired at shorter inter-target lags, and then gradually improves as lag increases. This second-target deficit is known as the attentional blink (AB). Numerous studies have implicated competition for access to higher-order processing mechanisms as the primary cause of the AB. However, relatively few studies have directly examined how the AB modulates activity in specific brain areas. To this end, we used fMRI to measure activation in the occipital and parietal cortices (including V1, V2, and area MT) during an AB task. Participants were presented with an initial target of oriented line segments embedded in a central stream of letter distractors. This central target was followed 100 - 700 ms later by a peripheral ‘X’ presented at one of four locations along with three ‘+’ distractors. All peripheral items were presented in the centre of a small field of moving dots. Participants made non-speeded judgments about line-segment orientation and the location of the second target at the end of a trial and to ignore all other stimuli. The results showed a robust AB characterised by a linear improvement in second-target accuracy as lag increased. This pattern of behavioural results was mirrored by changes in activation patterns across a number of visual areas indicating robust modulation of brain activity by the AB.
Resumo:
This paper examines upper-body movement kinematics in individuals with high-functioning autism (HFA) and Asperger's disorder (AD). In general, the results indicate that HFA is more consistently associated with impaired motoric preparation/initiation than AD. The data further suggest that this quantitative difference in motor impairment is not necessarily underpinned by greater executive dysfunction vulnerability in autism relative to AD. Quantitative motoric dissociation between autism and AD may have down-stream effects on later stages of movement resulting in qualitative differences between these disorder groups, e.g. motor clumsiness in AD versus abnormal posturing in autism. It will be important for future research to map the developmental trajectory of motor abnormalities in these disorder groups.
Resumo:
This study aimed to quantify the efficiency and smoothness of voluntary movement in Huntington's disease (HD) by the use of a graphics tablet that permits analysis of movement profiles. In particular, we aimed to ascertain whether a concurrent task (digit span) would affect the kinematics of goal-directed movements. Twelve patients with HD and their matched controls performed 12 vertical zig-zag movements, with both left and right hands (with and without the concurrent task), to large or small circular targets over long or short extents. The concurrent task was associated with shorter movement times and reduced right-hand superiority. Patients with HD were overall slower, especially with long strokes, and had similar peak velocities for both small and large targets, so that controls could better accommodate differences in target size. Patients with HD spent more time decelerating, especially with small targets, whereas controls allocated more nearly equal proportions of time to the acceleration and deceleration phases of movement, especially with large targets. Short strokes were generally less force inefficient than were long strokes, especially so for either hand in either group in the absence of the concurrent task, and for the right hand in its presence. With the concurrent task, however, the left hand's behavior changed differentially for the two groups; for patients with HD, it became more force efficient with short strokes and even less efficient with long strokes, whereas for controls, it became more efficient with long strokes. Controls may be able to divert attention away from the inferior left hand, increasing its automaticity, whereas patients with HD, because of disease, may be forced to engage even further online visual control under the demands of a concurrent task. Patients with HD may perhaps become increasingly reliant on terminal visual guidance, which indicates an impairment in constructing and refining an internal representation of the movement necessary for its. effective execution. Basal ganglia dysfunction may impair the ability to use internally generated cues to guide movement.
Resumo:
Emotional accounts of startle modulation predict that startle is facilitated if elicited during aversive foreground stimuli. Attentional accounts hold that startle is enhanced if startle-eliciting stimulus and foreground stimulus are in the same modality. Visual and acoustic foreground stimuli and acoustic startle probes were employed in aversive differential conditioning and in a stimulus discrimination task. Differential conditioning was evident in electrodermal responses and blink latency shortening in both modalities, but effects on magnitude facilitation were found only for visual stimuli. In the discrimination task, skin conductance responses, blink latency shortening, and blink magnitude facilitation were larger during to-be-attended stimuli regardless of stimulus modality. The present results support the notion that attention and emotion can affect blink startle modulation during foreground stimuli.
Resumo:
Attentional accounts of blink facilitation during Pavlovian conditioning predict enhanced reflexes if reflex and unconditional stimuli (US) are from the same modality. Emotional accounts emphasize the importance of US intensity. In Experiment 1, we crossed US modality (tone vs, shock) and intensity in a 2 X 2 between-subjects design. US intensity but not US modality affected blink facilitation. Tn Experiment 2, we demonstrated that the results from Experiment 1 were not due to the motor task requirements employed. In Experiment 3, we used a within-subjects design to investigate the effects of US modality and intensity. Contrary to predictions derived from an attentional account, blink facilitation was larger during conditional stimuli that preceded shock than during those that preceded tones. The present results are not consistent with an attentional account of blink facilitation during Pavlovian conditioning in humans.
Resumo:
Objectives-This study adopted a concurrent task design and aimed to quantify the efficiency and smoothness of voluntary movement in Tourette's syndrome via the use of a graphics tablet which permits analysis of movement profiles. In particular, the aim was to ascertain whether a concurrent task (digit span) would affect the kinematics of goal directed movements, and whether patients with Tourette's syndrome would exhibit abnormal functional asymmetries compared with their matched controls. Methods-Twelve patients with Tourette's syndrome and their matched controls performed 12 vertical zig zag movements, with both left and right hands (with and without the concurrent task), to large or small targets over long or short extents. Results-With short strokes, controls showed the predicted right hand superiority in movement time more strongly than patients with Tourette's syndrome, who instead showed greater hand symmetry with short strokes. The right hand of controls was less force efficient with long strokes and more force efficient with short strokes, whereas either hand of patients with Tourette's syndrome was equally force efficient, irrespective of stroke length, with an overall performance profile similar to but better than that of the controls' left hand. The concurrent task, however, increased the force efficiency of the right hand in patients with Tourette's syndrome and the left hand in controls. Conclusions-Patients with Tourette's syndrome, compared with controls, were not impaired in the performance of fast, goal directed movements such as aiming at targets; they performed in certain respects better than controls. The findings clearly add to the growing literature on anomalous lateralisation in Tourette's syndrome, which may be explained by the recently reported loss of normal basal ganglia asymmetries in that disorder.
Resumo:
Patella stabilizer muscle response and patellar kinematics were evaluated in 19 women with anterior knee pain (AKP) and 20 healthy women during maximum voluntary isometric contraction (MVIC) with the knee positioned at 15 degrees, 30 degrees and 45 degrees flexion during open (OKC) and closed (CKC) kinetic chain exercises. Patellar kinematics was evaluated through patellar tilt and displacement, and the electrical activity of patellar stabilizers through the root mean square normalized during MVIC and OKC with the knee at 90 degrees flexion. Data revealed that the vastus medialis oblique muscle (VMO) was more active in the control group compared to the AKP group during OKC exercises with the knee at 45 degrees flexion. However, no difference in the patellar kinematics was observed between these groups; nevertheless, the correlation between these parameters also showed, with the knee at 45 degrees flexion, that lateral patellar tilt increase was associated with a reduction in the activity of lateral patellar stabilizers in the control group and with an increase in the VMO activity in the AKP group. In conclusion, electrical activity is an important factor in evaluating AKP and in AKP treatment evolution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Spontaneous blinking is essential for maintaining a healthy ocular surface and clarity of vision. The spontaneous blink rate (SBR) is believed to reflect a complex interaction between peripheral influences mediated by the eye surface and the central dopaminergic activity. The SBR is thus extremely variable and dependent on a variety of psychological and medical conditions. Many different methods have been employed to measure the SBR and the upper eyelid kinematics during a blink movement. Each has its own merits and drawbacks, and the choice of a specific method should be tailored to the specific needs of the investigation. Although the sequence of muscle events that leads to a blink has been fully described, knowledge about the neural control of spontaneous blinking activity is not complete. The tear film is dynamically modified between blinks, and abnormalities of the blink rate have an obvious influence on the ocular surface.
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The present research investigated blink startle modulation during the anticipation of pleasant, unpleasant, or neutral pictures. In Experiment 1 (N = 18), participants were presented with three different tone-picture pairings. Tones differed in pitch and were followed by pleasant, neutral or unpleasant pictures. Acoustic blink reflexes were elicited during some tones and during stimulus free intervals. Blink facilitation during tones that preceded pleasant and unpleasant pictures was larger than during the tone that preceded neutral pictures. Experiment 2 (N = 10) assessed whether this difference was due to a difference in the presentation frequency of the three conditions. No difference in blink facilitation between the conditions was found when pictures of flowers and mushrooms replaced the pleasant and unpleasant pictures, indicating that picture content was instrumental in causing the differential blink facilitation in Experiment 1. The results from Experiment 1 seem to indicate that startle modulation during the anticipation of pictorial material reflects the interest in or the arousal associated with the pictures rather than picture valence.
Resumo:
The conditions under which blink startle facilitation can be found in anticipation of a reaction time task were investigated to resolve inconsistent findings across previous studies. Four groups of participants (n = 64) were presented with two visual stimuli, one predicting a reaction time task (S+) and the second presented alone (S-). Participants were asked to make a speeded response to the offset of the S+ (S1 paradigm) or were asked to respond to a tactile stimulus presented at the offset of the S+ (S1-S2 paradigm). Half of the participants in each paradigm condition received performance feedback. Overall, blink latency shortening and magnitude facilitation were larger during S+ than during S-. More detailed analyses, however, found these differences to be reliable only in the Feedback conditions. Ratings of S+ pleasantness did not change across the experiment. Electrodermal responses to S+ were larger than to S- in all groups with differential electrodermal responding emerging earlier in the S1 paradigm. Taken together, the data support the notion that startle facilitation can occur during non-aversive Pavlovian conditioning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two experiments investigated the effects of the sensory modality of the lead and of the blink-eliciting stimulus during lead stimulus modality change on blink modulation at lead intervals of 2500 and 3500 ins. Participants were presented with acoustic, visual, or tactile change stimuli after habituation training with lead stimuli from the same or a different sensory modality. In Experiment 1, latency and magnitude of the acoustic blink were facilitated during a change to acoustic or visual lead stimuli, but not during a change to tactile lead stimuli. After habituation to acoustic lead stimuli, blink magnitude was smaller during tactile change stimuli than during habituation stimuli. The latter finding was replicated in Experiment 2 in which blink was elicited by electrical stimulation of the trigeminal nerve. The consistency of the findings across different combinations of lead stimulus and blink-eliciting stimulus modalities does not support a modality-specific account of attentional blink modulation. Rather, blink modulation during generalized orienting reflects modality non-specific processes, although modulation may not always be found during tactile lead stimuli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The hanging wall of the Alpine Fault near Franz Josef Glacier has been exhumed during the past similar to2-3 m.y. providing a sample of the ductilely deformed middle crust of a modem obliquely convergent orogen. Presently exposed rocks of the Pacific Plate are inferred to have undergone several phases of ductile deformation as they moved westward above a mid-crustal detachment. Initially they were transpressed across the outboard part of the orogen, resulting in oblate fabrics with a down-dip stretch. Later, they encountered the Alpine Fault, experiencing an oblique-slip backshearing on vertical planes. This escalator-like deformation tilted and thinned the incoming crust onto that crustal-scale oblique ramp. This style of hanging wall deformation may affect only the most rapidly uplifting, central part of the Southern Alps because of the low flexural rigidity of the crust in that region and its displacement over a relatively sharp ramp-angle at depth. A 3D transpressive flow affected mylonites locally near the fault, but their shear direction remained parallel to plate motion, ruling out ductile 'extrusion' as an important process in this orogen. Outside the mylonite zone, late Cenozoic shortening is inferred to be modest (30-40%), as measured from deformation of younger biotite grains. Oblique collision is dominated by translation on the Alpine Fault, and rocks migrate rapidly through the deforming zone, preventing the accumulation of large finite strains. Transpression may play a minor role in oblique collision. (C) 2001 Elsevier Science Ltd. All rights reserved.