95 resultados para Bleomycin
Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis
Resumo:
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.
Resumo:
PURPOSE: We evaluated the long-term outcome after 1 cycle of adjuvant modified bleomycin, etoposide and cisplatin chemotherapy in patients who underwent orchiectomy for high risk clinical stage I nonseminomatous germ cell tumor of the testis. MATERIALS AND METHODS: Between 1995 and 1999 a consecutive series of 44 patients underwent orchiectomy for clinical stage I nonseminomatous germ cell tumor of the testis, followed by a single postoperative cycle of adjuvant modified bleomycin, etoposide and cisplatin for vascular or lymphatic tumor invasion, and/or a predominance (50% or greater) of embryonal carcinoma. RESULTS: Four of the 44 patients were excluded from analysis. Of the patients 35 had no evidence of disease at a median followup of 99 months (range 60 to 134). One patient with progression after 13 months showed complete remission after 3 cycles of salvage bleomycin, etoposide and cisplatin chemotherapy but he died of pneumonia 4 weeks after the third course. Two patients underwent orchiectomy for contralateral testis cancer at 18 and 42 months, respectively, followed by an additional 3 cycles of adjuvant chemotherapy. They remained relapse-free for 4 and 92 months, respectively. The former patient was lost to followup after 4 months. Two other patients were disease-free at 10 and 31 months, respectively, and were lost to followup thereafter. Late side effects were tinnitus in 3 patients and involuntary childlessness in 3, of whom 2 had cryptorchidism of the contralateral testis. Nine patients fathered children. CONCLUSIONS: One cycle of bleomycin, etoposide and cisplatin effectively decreases the risk of relapse in patients with high risk stage I nonseminomatous germ cell tumor of the testis. It has minimal side effects and can be a valuable alternative to retroperitoneal lymph node dissection.
Resumo:
Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^
Resumo:
BACKGROUND The treatment and outcomes of patients with human immunodeficiency virus (HIV)-associated Hodgkin lymphoma (HL) continue to evolve. The International Prognostic Score (IPS) is used to predict the survival of patients with advanced-stage HL, but it has not been validated in patients with HIV infection. METHODS This was a multi-institutional, retrospective study of 229 patients with HIV-associated, advanced-stage, classical HL who received doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) plus combination antiretroviral therapy. Their clinical characteristics were presented descriptively, and multivariate analyses were performed to identify the factors that were predictive of response and prognostic of progression-free survival (PFS) and overall survival (OS). RESULTS The overall and complete response rates to ABVD in patients with HIV-associated HL were 91% and 83%, respectively. After a median follow-up of 5 years, the 5-year PFS and OS rates were 69% and 78%, respectively. In multivariate analyses, there was a trend toward an IPS score >3 as an adverse factor for PFS (hazard ratio [HR], 1.49; P=.15) and OS (HR, 1.84; P=.06). A cluster of differentiation 4 (CD4)-positive (T-helper) cell count <200 cells/μL was associated independently with both PFS (HR, 2.60; P=.002) and OS (HR, 2.04; P=.04). The CD4-positive cell count was associated with an increased incidence of death from other causes (HR, 2.64; P=.04) but not with death from HL-related causes (HR, 1.55; P=.32). CONCLUSIONS The current results indicate excellent response and survival rates in patients with HIV-associated, advanced-stage, classical HL who receive ABVD and combination antiretroviral therapy as well as the prognostic value of the CD4-positive cell count at the time of lymphoma diagnosis for PFS and OS. Cancer 2014. © 2014 American Cancer Society.
Resumo:
BACKGROUND To report the long-term results of adjuvant treatment with one cycle of modified bleomycin, etoposide, and cisplatin (BEP) in patients with clinical stage I (CS I) nonseminomatous germ-cell tumors (NSGCT) at high risk of relapse. PATIENTS AND METHODS In a single-arm, phase II clinical trial, 40 patients with CS I NSGCT with vascular invasion and/or >50% embryonal cell carcinoma in the orchiectomy specimen received one cycle of adjuvant BEP (20 mg/m(2) bleomycin as a continuous infusion over 24 h, 120 mg/m(2) etoposide and 40 mg/m(2) cisplatin each on days 1-3). Primary end point was the relapse rate. RESULTS Median follow-up was 186 months. One patient (2.5%) had a pulmonary relapse 13 months after one BEP and died after three additional cycles of BEP chemotherapy. Three patients (7.5%) presented with a contralateral metachronous testicular tumor, and three (7.5%) developed a secondary malignancy. Three patients (7.5%) reported intermittent tinnitus and one had grade 2 peripheral polyneuropathy (2.5%). CONCLUSIONS Adjuvant chemotherapy with one cycle of modified-BEP is a feasible and safe treatment of patients with CS I NSGCT at high risk of relapse. In these patients, it appears to be an alternative to two cycles of BEP and to have a lower relapse rate than retroperitoneal lymph node dissection. If confirmed by other centers, 1 cycle of adjuvant BEP chemotherapy should become a first-line treatment option for this group of patients.