915 resultados para Black Phosphorus
Resumo:
The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.
Resumo:
Padrões de dispersão de nutrientes em terra preta Amazônica (TPA) podem dar informações sobre atividades antrópicas dos habitantes da Amazônia. Estudos sobre pH, fósforo disponível (P), matéria orgânica (MO) e os cátions trocáveis, Ca2+ e Mg2+, foram realizados em amostras de solos dos horizontes A1 e A2 ao longo de uma área com TPA (norte-sul e leste-oeste) em um sítio arqueológico denominado Ilha de Terra, na Unidade de Conservação Floresta Nacional de Caxiuanã, Município de Melgaço, Brasil. Os resultados indicaram que a MO e o Ca são os que apresentam maior dispersão. Correlações mais elevadas foram encontradas entre OM-Ca-Mg às proximidades da área central e levam a inferir que a dispersão geoquímica de MO, Ca, Mg e P em sítios arqueológicos com TPA está relacionada com atividades humanas pregressas.
Resumo:
Neste trabalho realizou-se a caracterização química de fragmentos de artefatos cerâmicos encontrados em sítios arqueológicos com terra preta no Baixo Amazonas (Cachoeira-Porteira, Pará, Brasil), representativos da cultura Konduri (de 900 a 400 anos AP). Esses fragmentos são constituídos de SiO2, Al2O3, Fe2O3, Na2O e P2O5, sendo que SiO2 e Al2O3, juntos, perfazem mais de 80 % em peso. Os teores de P2O,5 são relativamente elevados (2,37 % em média) sob a forma de (Al,Fe)-fosfatos, incomuns em cerâmicas vermelhas primitivas, mas encontrados em algumas cerâmicas arqueológicas egípcias e romanas. As concentrações dos elementos traços são comparáveis ou mesmo inferiores ao nível crustal, embora a composição total seja próxima a mesma. A composição química (exceto P2O5) em conjunto com os dados mineralógicos e texturais indicam material saprolítico derivado de rochas ígneas félsicas ou rochas sedimentares como matéria-prima das cerâmicas. Os teores de K, Ca e Na mostram que os feldspatos e fragmentos de rochas foram adicionados ao material argiloso, como sugerido pela mineralogia. Os altos teores de sílica respondem pela presença de cauixi, cariapé e/ou areias quartzosas. Fósforo deve ter sido incorporadoà matriz argilosa da cerâmica, quando do cozimento de alimentos nos vasos cerâmicos, e ainda, em parte, durante a formação do perfil de solo tipo ABE sobre Latossolos Amarelos. A matéria prima e os temperos (cauixi, cariapé, rochas trituradas e fragmentos de vasos cerâmicos descartados) encontram-se disponíveis próximos aos sítios até a atualidade, e, portanto foram a área fonte dos mesmos para a confecção dos artefatos cerâmicos.
Resumo:
The objective of this work was to evaluate the effectiveness of ruzigrass (Urochloaruziziensis) in enhancing soil-P availability in areas fertilized with soluble or reactive rock phosphates. The area had been cropped for five years under no-till, in a system involving soybean, triticale/black-oat, and pearl millet. Previously to the five-year cultivation period, corrective phosphorus fertilization was applied once on soil surface, at 0.0 and 80 kg ha-1 P2O5, as triple superphosphate or Arad rock phosphate. After this five-year period, plots received the same corrective P fertilization as before and ruzigrass was introduced to the cropping system in the stead of the other cover crops. Soil samples were taken (0-10 cm) after ruzigrass cultivation and subjected to soil-P fractionation. Soybean was grown thereafter without P application to seed furrow. Phosphorus availability in plots with ruzigrass was compared to the ones with spontaneous vegetation for two years. Ruzigrass cultivation increased inorganic (resin-extracted) and organic (NaHCO3) soil P, as well as P concentration in soybean leaves, regardless of the P source. However, soybean yield did not increase significantly due to ruzigrass introduction to the cropping system. Soil-P availability did not differ between soluble and reactive P sources. Ruzigrass increases soil-P availability, especially where corrective P fertilization is performed.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
Lower Cretaceous sediments are frequently characterized by a well expressed cyclicity. While the processes influencing environments above the carbonate compensation depth (CCD) are reasonably well understood, almost nothing is known about the deep ocean. Cretaceous sub-CCD sediments from the Tethys and Atlantic Oceans typically show rhythmic black/green shale successions. To gain insight into the nature of these black/green shale cycles, we performed detailed geochemical analyses (X-ray fluorescence, Rock-Eval and reactive iron analysis) on a 3 m long section of latest Aptian age. The major-element distribution of the analyzed shale sequence indicates a periodic change from a high-productivity and well-oxygenated green shale mode to a low-productivity oxygen-deficient black shale mode. It is proposed here that the preservation of organic matter was dependent on the strength of salinity-driven deepwater generation. Furthermore, the data show that the Corg content covaries with changes in the detrital composition. Therefore we hypothesize that Tethyan deepwater circulation was sensitive to changes in the monsoonal system. Time series analysis suggests that these changes are periodic in nature, although we are currently unable to prove that the dominant periodicity is related to the precession component of the Milankovitch frequencies.
Resumo:
For the first time deep-sea mooring stations with sediment traps were deployed in the northeast Black Sea. One sediment trap for long-term studies was located at Station 1 (44°15'N, 37°43'E, deployment depth 1800 m, depth 1900 m). The trap collected sinking sedimentary material from January to May 1998. Material collectors were changed every 15 days. Other stations with sediment traps for short-term studies (September-October 1999) were located on the shelf: Station 2 (44°16'N, 38°37'E, deployment depth 45 m, depth 50 m) and on the bottom of the canyon: Station 3 (44°16'N, 38°22'E, deployment depth 1145 m, depth 1150 m), Station 4 (44°11'N, 38°21'E, deployment depths 200, 1550, 1650 m, depth 1670 m). Collected material indicates that vertical particle fluxes are controlled by seasonal changes of in situ production and by dynamics of terrigenous matter input. Higher vertical particle flux of carbonate and biogenic silica was in spring due to bloom of plankton organisms. Maximum of coccolith bloom is in April-May. Bloom of diatoms begins in March. In winter and autumn lithogenic material dominates in total flux. Its amount strongly depends on storms and river run-off. Suspended particle material differs from surface shelf sediments by finer particles (mainly clay fraction) and high content of clay minerals and biogenic silica. This material may form lateral fluxes with higher concentration of particles transported along the bottom of deep-sea canyons from the shelf to the deep basin within the nepheloid layer. In winter such transportation of sedimentary material is more intensive due to active vertical circulation of water masses.
Resumo:
Ferruginate shells and tubular worm burrows from the oxygenated zone of the Black Sea (Kalamit Bay and Danube River mouth) are studied by transmission and scanning electron microscopy combined with analyses of elemental composition. Iron and manganese oxyhydroxide nodules considered here are enriched in phosphorus. They contain variable amounts of terrigenous and biogenic material derived from host sediments. Oxyhydroxides are mainly characterized by colloform structure, whereas globular and crystalline structures are less common. The dominating iron phase is represented by ferroxyhite and protoferroxyhite, whereas the manganese phase is composed of Fe-free vernadite. Concentrations of Mn, As, and Mo are 12-18 times higher relative to sediments, while concentrations of Fe, P, Ni, and Co increase 5-7 times during nodule formation.
Resumo:
Data of chemical analysis of Black Sea ctenophore Mnemiopsis leidyi indicates that their body contains on average 5.28% carbon, 3.48% nitrogen, 0.11% phosphorus, and 0.03% silicon on dry weight. Mean ratios of the main biogenic elements in ctenophores is C:N=1.4, N:P=10.9, and C:P=32.2. Comparing concentration of the main biogenic elements in the surface layer with their concentrations in ctenophores it is concluded that mass development of M. leidyi has negative effect on the hydrochemical structure of the Black Sea.
Resumo:
Concentrations of major-, trace- and rare earth elements in recent and Old Black Sea bottom sediments are reported in the paper. Data presented suggest that accumulation of black shale deposits was not constrained to a certain time span but proceeds in certain modern basins and generates sediments with metal contents close to those in their ancients analogues in hydrogen sulfide contaminated environments. If REE are involved in the process, their composition can vary depending on such factors as variations in redox conditions and occurrence of phosphate and barite nodules, which can induce development of either positive or negative Eu anomalies.
Resumo:
Ferromanganese concretions spread out on the bottom of the shallow northwest part of the Black Sea are mainly represented by Fe and Mn nodules on shells and substituted worm tubes. Element composition of these formations was measured by methods of chemical, atomic absorbtion, neutron activation, and ICP-MS analyses. It was established that Fe and Mn contents and Mn/Fe ratio in the concretions varied considerably and which controlled occurrence of several associated metals and minor elements; some of them have not been studied in Black Sea concretions before.