922 resultados para Biosynthesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral capsular polysaccharides (CPSs) were isolated from Acinetobacter baumannii NIPH190, NIPH201, and NIPH615. The CPSs were found to contain common monosaccharides only and to be branched with a side-chain 1→3-linked β-d-glucopyranose residue. Structures of the oligosaccharide repeat units (K units) of the CPSs were elucidated by 1D and 2D 1H and 13C NMR spectroscopy. Novel CPS biosynthesis gene clusters, designated KL30, KL45, and KL48, were found at the K locus in the genome sequences of NIPH190, NIPH201, and NIPH615, respectively. The genetic content of each gene cluster correlated with the structure of the CPS unit established, and therefore, the capsular types of the strains studied were designated as K30, K45, and K48, respectively. The initiating sugar of each K unit was predicted, and glycosyltransferases encoded by each gene cluster were assigned to the formation of the linkages between sugars in the corresponding K unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to investigate whether the hypocholesterolemic effect of polyunsaturated oils is due to inhibition of cholesterol synthesis or increased excretion of cholesterol and bile acids through the bile and feces of animals. Separate groups of rats were fed diets containing 10% safflower oil, coconut oil or hydrogenated vegetable oils for 30 days, after which the hepatic cholesterol and bile acid synthesis and their excretion through the bile and feces were studied. As compared to the rats in the other two groups, those given the diet containing 10% safflower oil showed markedly increased rates of bile flow and excreted through their bile and feces markedly higher amounts of cholesterol and bile acids. At the same time incorporation of [1-14C] acetate and [2-14C] mevalonate into the liver cholesterol and conversion of [4-14C] cholesterol into 14C-bile acids were also higher in the same rats. In the light of these observations it has been discussed that in the animals given polyunsaturated oils, biliary and fecal loss of cholesterol and bile acids far outweighs the activation of cholesterol synthesis and thereby effectively lowers the serum cholesterol levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the unexplored, yet important aspects of the biology of acyl carrier proteins (ACPs) is the self-acylation and malonyl transferase activities dedicated to ACPs in polyketide synthesis. Our studies demonstrate the existence of malonyl transferase activity in ACPs involved in type II fatty acid biosynthesis from Plasmodium falciparum and Escherichia coli. We also show that the catalytic malonyl transferase activity is intrinsic to an individual ACP. Mutational analysis implicates an arginine/lysine in loop II and an arginine/glutamine in helix III as the catalytic residues for transferase function. The hydrogen bonding properties of these residues appears to be indispensable for the transferase reaction. Complementation of fabD(Ts) E. coli highlights the putative physiological role of this process. Our studies thus shed light on a key aspect of ACP biology and provide insights into the mechanism involved therein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropical marine sponge Acanthella cavernosa (Dendy) converts potassium [14C] cyanide to axisonitrile-3 (1); this precursor is also used for the synthesis of axisothiocyanate-3 (2) suggesting that isocyanides are precursors to isothiocyanates in A. cavernosa. Likewise, potassium [14C] thiocyanate is used for the synthesis of axisothiocyanate-3; unexpectedly this precursor also labelled axisonitrile-3. These results demonstrate either an interconversion between cyanide and thiocyanate prior to secondary metabolite formation or that the secondary metabolites can themselves be interconverted. Specimens of the dorid nudibranch Phyllidiellu pustulosa, preadapted to a diet of A. cavernosa, fed on 14C-labelled sponges and were subsequently found to contain the radioactive terpenes (1) and (2). Specimens of P. pustulosa, which had not expressed a dietary preference for A. cavernosa in the field, did not generally feed in aquarium tests with 14C-labelled sponges and, therefore, provided non-radioactive extracts. Since control experiments demonstrated the inability of P. pustulosa to synthesise the metabolites de novo, we therefore conclude that P. pustulosa acquires secondary metabolites by dietary transfer from A. cavernosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of rats with Adriamycin caused an increase in the incorporation into hepatic cholesterol of [1-14C] acetate, but not of [2-14C] mevalonate. The step affected was found to be 3-hydroxy-3-methylglutaryl CoA reductase whose activity in the liver microsomes increased in Adriamycin-treated animals, but was inhibited when the drug was added in the assay medium. Also, the concentration of ubiquinone in the liver and of cholesterol in the plasma increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using 2H-labeled precursors and [18O]dioxygen. The key steps are postulated to be decarboxylation of β-ketoacid equivalents, β-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of the cytoplasmic subunits of cytochrome oxidase from rat liver has been studied in vitro by translating liver poly (A)-containing RNA in the wheat germ cell-free system and immunoprecipitating the products with anti-cytochrome oxidase antibody. Analysis of the labelled immunoprecipitate on SDS-gels does not reveal the presence of a polyprotein precursor. On the other hand discrete products which are either slightly bigger or closely similar to the mature subunits present in purified cytochrome oxidase have been detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-free preparations of rat sciatic nerve were found to catalyze the reduction of fatty acid to alcohol in the presence of NADPH as reducing cofactor. The reductase was membrane-bound and associated primarily with the microsomal fraction. When fatty acid was the substrate, ATP, coenzyme A (CoA), and Mg2+ were required, indicating the formation of acyl CoA prior to reduction. When acyl CoA was used as substrate, the presence of albumin was required to inhibit acyl CoA hydro-lase activity. Fatty acid reductase activity was highest with palmitic and stearic acids, and somewhat lower with lauric and myristic acids. It was inhibited by sulfhydryl reagents, indicating the participation of thiol groups in the reduction. Only traces of long-chain aldehyde could be detected or trapped as semicarbazone. Fatty acid reductase activity in rat sciatic nerve was highest between the second and tenth days after birth and decreased substantially thereafter. Microsomal preparations of sciatic nerve from 10-day-old rats exhibited about four times higher fatty acid reductase activity than brain or spinal cord microsomes from the same animals. Wallerian degeneration and regeneration of adult rat sciatic nerve resulted in enhanced fatty acid reductase activity, which reached a maximum at about 12 days after crush injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of mitochondria increased the incorporation of [2-14C]mevalonate into sterols in a cell-free system from rat liver. Various phenyl and phenolic compounds inhibited the incorporation of mevalonate when added in vitro. p-Hydroxycinnamate, a metabolite of tyrosine, was the most powerful inhibitor among the compounds tested. Catechol, resorcinol and quinol were inhibitory at high concentrations. Organic acids lacking an aromatic ring were not inhibitory. Two hypocholesterolaemic drugs, Clofibrate (α-p-chlorophenoxyisobutyrate) and Clofenapate [α,4-(p-chlorophenyl)phenoxyisobutyrate], which are known to affect some step before the formation of mevalonate in the biosynthesis of cholesterol in vivo, showed inhibition at a step beyond the formation of mevalonate in vitro. The presence of the aromatic ring and the carboxyl group in a molecule appears to be necessary for the inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of certain amines in Lathyrus sativus seedlings was studied in isolated shoots and cotyledons. In shoots, arginine was about 14 times more efficient than ornithine for the synthesis of agmatine, putrescine, spermidine and spermine. Isotope dilution experiments, and the changes in specific activities of the 4 amines with time when 14C-arginine served as the precursor, indicated that putrescine and the polyamines were formed mainly from arginine, via agmatine. Similar experiments showed that cadaverine was formed at least in part from homoarginine, though lysine was ca 4 times more effective as a precursor. The pattern of changes in specific activity of homoagmatine and cadaverine with time when 14C-homoarginine served as the precursor support the conclusion that homoarginine and arginine follow analogous metabolic routes in the biosynthesis of putrescine and cadaverine respectively.