1000 resultados para Biophysical characterization
Resumo:
Com características morfológicas e edafo-climáticas extremamente diversificadas, a ilha de Santo Antão em Cabo Verde apresenta uma reconhecida vulnerabilidade ambiental a par de uma elevada carência de estudos científicos que incidam sobre essa realidade e sirvam de base à uma compreensão integrada dos fenómenos. A cartografia digital e as tecnologias de informação geográfica vêm proporcionando um avanço tecnológico na colecção, armazenamento e processamento de dados espaciais. Várias ferramentas actualmente disponíveis permitem modelar uma multiplicidade de factores, localizar e quantificar os fenómenos bem como e definir os níveis de contribuição de diferentes factores no resultado final. No presente estudo, desenvolvido no âmbito do curso de pós-graduação e mestrado em sistemas de Informação geográfica realizado pela Universidade de Trás-os-Montes e Alto Douro, pretende-se contribuir para a minimização do deficit de informação relativa às características biofísicas da citada ilha, recorrendo-se à aplicação de tecnologias de informação geográfica e detecção remota, associadas à análise estatística multivariada. Nesse âmbito, foram produzidas e analisadas cartas temáticas e desenvolvido um modelo de análise integrada de dados. Com efeito, a multiplicidade de variáveis espaciais produzidas, de entre elas 29 variáveis com variação contínua passíveis de influenciar as características biofísicas da região e, possíveis ocorrências de efeitos mútuos antagónicos ou sinergéticos, condicionam uma relativa complexidade à interpretação a partir dos dados originais. Visando contornar este problema, recorre-se a uma rede de amostragem sistemática, totalizando 921 pontos ou repetições, para extrair os dados correspondentes às 29 variáveis nos pontos de amostragem e, subsequente desenvolvimento de técnicas de análise estatística multivariada, nomeadamente a análise em componentes principais. A aplicação destas técnicas permitiu simplificar e interpretar as variáreis originais, normalizando-as e resumindo a informação contida na diversidade de variáveis originais, correlacionadas entre si, num conjunto de variáveis ortogonais (não correlacionadas), e com níveis de importância decrescente, as componentes principais. Fixou-se como meta a concentração de 75% da variância dos dados originais explicadas pelas primeiras 3 componentes principais e, desenvolveu-se um processo interactivo em diferentes etapas, eliminando sucessivamente as variáveis menos representativas. Na última etapa do processo as 3 primeiras CP resultaram em 74,54% da variância dos dados originais explicadas mas, que vieram a demonstrar na fase posterior, serem insuficientes para retratar a realidade. Optou-se pela inclusão da 4ª CP (CP4), com a qual 84% da referida variância era explicada e, representando oito variáveis biofísicas: a altitude, a densidade hidrográfica, a densidade de fracturação geológica, a precipitação, o índice de vegetação, a temperatura, os recursos hídricos e a distância à rede hidrográfica. A subsequente interpolação da 1ª componente principal (CP1) e, das principais variáveis associadas as componentes CP2, CP3 e CP4 como variáveis auxiliares, recorrendo a técnicas geoestatística em ambiente ArcGIS permitiu a obtenção de uma carta representando 84% da variação das características biofísicas no território. A análise em clusters validada pelo teste “t de Student” permitiu reclassificar o território em 6 unidades biofísicas homogéneas. Conclui-se que, as tecnologias de informação geográfica actualmente disponíveis a par de facilitar análises interactivas e flexíveis, possibilitando que se faça variar temas e critérios, integrar novas informações e introduzir melhorias em modelos construídos com bases em informações disponíveis num determinado contexto, associadas a técnicas de análise estatística multivariada, possibilitam, com base em critérios científicos, desenvolver a análise integrada de múltiplas variáveis biofísicas cuja correlação entre si, torna complexa a compreensão integrada dos fenómenos.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.
Resumo:
This Feature Article discusses several classes of lipopeptide with important biomedical applications as antimicrobial and antifungal agents, in immune therapies and in personal care applications among others. Two main classes of lipopeptide are considered: (i) bacterially-expressed lipopeptides with a cyclic peptide headgroup and (ii) linear lipopeptides (with one or more lipid chains) based on bio-derived and bio-inspired amino acid sequences with current clinical applications. The applications are briefly summarized, and the biophysical characterization of the molecules is reviewed, with a particular focus on self-assembly. For several of these types of biomolecule, the formation of micelles above a critical micelle concentration has been observed while others form bilayer structures, depending on conditions of pH and temperature. As yet, there are few studies on the possible relationship between self-assembly into structures such as micelles and bioactivity of this class of molecule although this is likely to attract further attention.
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lignin is a macromolecule frequently obtained as residue during technological processing of biomass. Modifications in chemical structure of lignin generate valuable products, some with particular and unique characteristics. One of the available methods for modification of industrial lignin is oxidation by hydrogen peroxide. In this work, we conducted systematic studies of the oxidation process that were carried out at various pHs and oxidizing agent concentrations. Biophysical, biochemical, structural properties of the oxidized lignin were analyzed by UV spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy and small angle X-ray scattering. Our results reveal that lignin oxidized with 9.1% H(2)O(2) (m/v) at pH 13.3 has the highest fragmentation, oxidation degree and stability. Although this processing condition might be considered quite severe, we have concluded that the stability of the obtained oxidized lignin was greatly increased. Therefore, the identified processing conditions of oxidation may be of practical interest for industrial applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.
Resumo:
Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^
Resumo:
The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.
Resumo:
This essay addresses the application of indigenous plants in Landscape Architecture projects, based on studies carried out in the field of phytosociology and sinphytosociology. Through this knowledge, it is possible to increase and improve the use of indigenous plants in Projects, aiming at the preservation of biodiversity. Thus, to better understand the western Mediterranean territory, we present a brief biophysical characterization, in which we point out the main factors which contribute to the ground coverage’s distribution in the landscape, namely, concerning climate (oceanity, ombroclimate and thermoclimate) and substrate (geology and lithology). In view of the high level of uniqueness of the identified conditions, a synthesis of the potential main existing climatophilous woods is carried out, regarding sinphytosocialogical class/order, furthermore, pointing out, the main serial stages, their vegetation bioindicators and the ecological peculiarities of each stage (regressive or progressive). Therefore, based on the study area, we point out the vegetation bioindicator’s value as a work tool during analysis, thus allowing us to understand the existing edaphoclimatic conditions, as well as to elaborate a quick diagnosis of each potential climatophilous vegetation series. Moreover, based on the main stages of substitution, it is also possible to identify the presence of endemic plants, or under protection status, and finally, the conservation state of the study area. Further ahead, in project proposal phase, based on information gathered previously, we point out the possibility of elaborating a list of plants correctly adapted to the existing mesologicall conditions. Thus, within each serial stage, the necessary ecological conditions for a correct adaption of the vegetation material are referred, therefore, avoiding possible limiting factors to their development, such as precipitation, soil erosion, light availability, salinity, among many others. Lastly, some considerations are made about the main ideas that should be remembered throughout this essay, namely, regarding the importance of the use of sinphytosociology’s knowledge as an analysis tool, as well as of high interest for the elaboration of proposals which aim at the floristic heritage’s conservation and the landscape’s scenic quality. Ce travail traite de l`application de plantes autochtones dans des projets d`Architecture Paysagiste ayant pour base des études réalisées dans le cadre de la phytosociologie et Symphytosociologie. À travers ces connaissances, il est possible d`incrémenter et améliorer l`utilisation de plantes autochtones dans les Projets basés sur la conservation de la biodiversité. Ainsi, afin de mieux comprendre le territorie de la méditérrannée occidentale, on présente une brève caractérisation biophysique, dans laquelle nous soulignons les principaux facteurs qui contribuent à la répartition de la végétation dans le paysage, notamment au niveau climatique (l`océanité, ombrothermique et thermoclimatique) et du substrat (géologie et lithologie). Face aux conditions, identifiées ci-dessus, élévées en originalité, il est utile d`élaborer une synthèse des principaux bois potentiels climatophiles existants au niveau de la classe/ordre symphitosociologique, en soulignant également les principales étapes de série, leurs bioindicateurs végétaux et aux particularités écologiques de chaque étape (régressive ou progressive). Ainsi, sur la base de l`interprétation de la zone d`étude, le bioindicateur végétal se distingue comme un outil de travail durant l`analyse, permettant de cette façon comprendre les conditions édapho-climatiques existantes, ainsi comme élaborer un rapide diagnostic de chaque série de végétation potentielle climatophile. En outre, sur la base des principales étapes de remplacement, il est également possible d`identifier la présence de plantes endémiques, ou avec un statut de protection et enfin l`état de conservation de la zone d`étude. Déjà au stade de proposition du projet, basée sur l`information recueillie précédemment, il y a la possibilité d`établir une liste de plantes bien adaptées aux conditions mésologiques. Ainsi, dans chaque étape de série, les conditions écologiques nécessaires à une bonne adaptation de la matière végétale sont référées, évitant ainsi des facteurs limitant à son développement, tels que les précipitations, l`érosion des soís, disponibilité de la lumière, de la salinité, parmi beaucoup d`autres. Et enfin, quelques considérations se tissent sur les principales idées à retenir tout au long du travail, notamment l`importance d`utiliser la connaissance de la symphytosociologie comme un outil d`analyse d`un grand intérêt pour la développement de propositions pour la conservation du patrimoine floristique et la qualité pittoresque du paysage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The alternative low-spin states of Fe3+ and Fe2+ cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met 80 by another strong field ligand at the sixth heme iron coordination position, Fe3+ ALSScytc exhibited 1-nm Soret band blue shift and e enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe3+ and Fe2+ ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe3+ ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential similar to 200 mV lower than the wild-type protein (1220 mV) and was more susceptible to the attack of free radicals.
Resumo:
INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.