767 resultados para Biopharmaceutics classification system
Resumo:
In the last few years the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how good is a voice when the application is a speech based interface. In this paper we present a new automatic voice pleasantness classification system based on prosodic and acoustic patterns of voice preference. Our study is based on a multi-language database composed by female voices. In the objective performance evaluation the system achieved a 7.3% error rate.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a commercial accelerometer-based activity monitor. Accelerometry data from patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive and mixed motor subtypes, were used to create classification trees that were Subsequently applied to the remaining cohort to define motoric subtypes. The classification trees used the periods of sitting/lying, standing, stepping and number of postural transitions as measured by the activity monitor as determining factors from which to classify the delirious cohort. The use of a classification system shows how delirium subtypes can be categorised in relation to overall activity and postural changes, which was one of the most discriminating measures examined. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behaviour differ in electronically measured activity levels. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes. © 2009 SPIE.
Resumo:
In this report it was designed an innovative satellite-based monitoring approach applied on the Iraqi Marshlands to survey the extent and distribution of marshland re-flooding and assess the development of wetland vegetation cover. The study, conducted in collaboration with MEEO Srl , makes use of images collected from the sensor (A)ATSR onboard ESA ENVISAT Satellite to collect data at multi-temporal scales and an analysis was adopted to observe the evolution of marshland re-flooding. The methodology uses a multi-temporal pixel-based approach based on classification maps produced by the classification tool SOIL MAPPER ®. The catalogue of the classification maps is available as web service through the Service Support Environment Portal (SSE, supported by ESA). The inundation of the Iraqi marshlands, which has been continuous since April 2003, is characterized by a high degree of variability, ad-hoc interventions and uncertainty. Given the security constraints and vastness of the Iraqi marshlands, as well as cost-effectiveness considerations, satellite remote sensing was the only viable tool to observe the changes taking place on a continuous basis. The proposed system (ALCS – AATSR LAND CLASSIFICATION SYSTEM) avoids the direct use of the (A)ATSR images and foresees the application of LULCC evolution models directly to „stock‟ of classified maps. This approach is made possible by the availability of a 13 year classified image database, conceived and implemented in the CARD project (http://earth.esa.int/rtd/Projects/#CARD).The approach here presented evolves toward an innovative, efficient and fast method to exploit the potentiality of multi-temporal LULCC analysis of (A)ATSR images. The two main objectives of this work are both linked to a sort of assessment: the first is to assessing the ability of modeling with the web-application ALCS using image-based AATSR classified with SOIL MAPPER ® and the second is to evaluate the magnitude, the character and the extension of wetland rehabilitation.
Resumo:
End-stage ankle arthritis should have an appropriate classification to assist surgeons in the management of end-stage ankle arthritis. Outcomes research also requires a classification system to stratify patients appropriately.
Resumo:
End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.
Resumo:
The comprehensive Hearing Preservation classification system presented in this paper is suitable for use for all cochlear implant users with measurable pre-operative residual hearing. If adopted as a universal reporting standard, as it was designed to be, it should prove highly beneficial by enabling future studies to quickly and easily compare the results of previous studies and meta-analyze their data. Objectives: To develop a comprehensive Hearing Preservation classification system suitable for use for all cochlear implant users with measurable pre-operative residual hearing. Methods: The HEARRING group discussed and reviewed a number of different propositions of a HP classification systems and reviewed critical appraisals to develop a qualitative system in accordance with the prerequisites. Results: The Hearing Preservation Classification System proposed herein fulfills the following necessary criteria: 1) classification is independent from users' initial hearing, 2) it is appropriate for all cochlear implant users with measurable pre-operative residual hearing, 3) it covers the whole range of pure tone average from 0 to 120 dB; 4) it is easy to use and easy to understand.
Resumo:
In a previous paper, we presented a proposed expansion of the National Guideline Clearing-house (NGC) classification1. We performed a preliminary evaluation of the classification based on 100 guidelines randomly selected from the NGC collection. We found that 89 of the 100 guidelines could be assigned to a single guideline category. To test inter-observer agreement, twenty guidelines were also categorized by a second investigator. Agreement was found to be 40-90% depending on the axis, which compares favorably with agreement among MeSH indexers (30-60%)2. We conclude that categorization is feasible. Further research is needed to clarify axes with poor inter-observer agreement.
Resumo:
A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^
Resumo:
OBJECTIVE Caesarean section (CS) rates have risen over the past two decades. The aim of this observational study was to identify time-dependent variations in CS and vaginal delivery rates over a period of 11 years. METHOD All deliveries (13,701 deliveries during the period 1999-2009) at the University Women's Hospital Bern were analysed using an internationally standardised and approved ten-group classification system. Caesarean sections on maternal request (CSMR) were evaluated separately. RESULTS We detected an overall CS rate of 36.63% and an increase in the CS rate over time (p <0.001). Low-risk profile groups were the two largest populations and displayed low CS rates, with significantly decreasing relative size over time. The relative size of groups with induced labour increased significantly, but this did not have an impact on the overall CS rate. Pregnancies complicated by breech position, multiple pregnancies and abnormal lies did not have an impact on overall CS rate. The biggest contributor to a high CS rate was preterm delivery and the existence of a uterine scar from a previous CS. CSMR was 1.45% and did not have an impact on the overall CS rate. CONCLUSION The observational study identified wide variations in caesarean section and vaginal delivery rates across the groups over time, and a shift towards high-risk populations was noted. The biggest contributors to high CS rates were identified; namely, previous uterine scar and preterm delivery. Interventions aiming to reduce CS rates are planned.