900 resultados para Biomedical technicians
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most common long-term complications of diabetes. The accurate detection and quantification of DPN are important for defining at-risk patients, anticipating deterioration, and assessing new therapies. Current methods of detecting and quantifying DPN, such as neurophysiology, lack sensitivity, require expert assessment and focus primarily on large nerve fibers. However, the earliest damage to nerve fibers in diabetic neuropathy is to the small nerve fibers. At present, small nerve fiber damage is currently assessed using skin/nerve biopsy; both are invasive technique and are not suitable for repeated investigations.
Resumo:
The ethical governance of biomedical research is an area of intense international debate. Scholars argue about who should regulate and how, the appropriate role for ethics committees, what kind of research should be included, and who should be involved in monitoring compliance. A particular aspect of these debates concerns the inclusion of women as research participants and the efforts to ensure that researchers consistently investigate questions of sex and gender in health research. There is increasing evidence of the role of sex in the manifestation and course of some illnesses and their treatment. Moreover, evidence suggests that gendered expectations also affect health outcomes. This special issue investigates how researchers are addressing these issues and debates the appropriate roles of policy makers, ethicists, and lawyers in ensuring that sex and gender differences are taken into account in the development, conduct, and reporting of health research.
Resumo:
Developments in medical science have sparked public debate about the legal and ethical implications of new technologies. Within these debates a number of distinct discourses are evident, including discourses about the positive and negative implications of technological advances, the influence of globalisation on regulatory choice, and the challenges of articulating common values in a pluralistic society. This article argues that an understanding of these discourses is an essential part of understanding the nature of contemporary regulatory dilemmas.
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.
Resumo:
Perceiving students, science students especially, as mere consumers of facts and information belies the importance of a need to engage them with the principles underlying those facts and is counter-intuitive to the facilitation of knowledge and understanding. Traditional didactic lecture approaches need a re-think if student classroom engagement and active learning are to be valued over fact memorisation and fact recall. In our undergraduate biomedical science programs across Years 1, 2 and 3 in the Faculty of Health at QUT, we have developed an authentic learning model with an embedded suite of pedagogical strategies that foster classroom engagement and allow for active learning in the sub-discipline area of medical bacteriology. The suite of pedagogical tools we have developed have been designed to enable their translation, with appropriate fine-tuning, to most biomedical and allied health discipline teaching and learning contexts. Indeed, aspects of the pedagogy have been successfully translated to the nursing microbiology study stream at QUT. The aims underpinning the pedagogy are for our students to: (1) Connect scientific theory with scientific practice in a more direct and authentic way, (2) Construct factual knowledge and facilitate a deeper understanding, and (3) Develop and refine their higher order flexible thinking and problem solving skills, both semi-independently and independently. The mindset and role of the teaching staff is critical to this approach since for the strategy to be successful tertiary teachers need to abandon traditional instructional modalities based on one-way information delivery. Face-to-face classroom interactions between students and lecturer enable realisation of pedagogical aims (1), (2) and (3). The strategy we have adopted encourages teachers to view themselves more as expert guides in what is very much a student-focused process of scientific exploration and learning. Specific pedagogical strategies embedded in the authentic learning model we have developed include: (i) interactive lecture-tutorial hybrids or lectorials featuring teacher role-plays as well as class-level question-and-answer sessions, (ii) inclusion of “dry” laboratory activities during lectorials to prepare students for the wet laboratory to follow, (iii) real-world problem-solving exercises conducted during both lectorials and wet laboratory sessions, and (iv) designing class activities and formative assessments that probe a student’s higher order flexible thinking skills. Flexible thinking in this context encompasses analytical, critical, deductive, scientific and professional thinking modes. The strategic approach outlined above is designed to provide multiple opportunities for students to apply principles flexibly according to a given situation or context, to adapt methods of inquiry strategically, to go beyond mechanical application of formulaic approaches, and to as much as possible self-appraise their own thinking and problem solving. The pedagogical tools have been developed within both workplace (real world) and theoretical frameworks. The philosophical core of the pedagogy is a coherent pathway of teaching and learning which we, and many of our students, believe is more conducive to student engagement and active learning in the classroom. Qualitative and quantitative data derived from online and hardcopy evaluations, solicited and unsolicited student and graduate feedback, anecdotal evidence as well as peer review indicate that: (i) our students are engaging with the pedagogy, (ii) a constructivist, authentic-learning approach promotes active learning, and (iii) students are better prepared for workplace transition.
Resumo:
In this paper, we study performance of Katz method of computing fractal dimension of waveforms, and its estimation accuracy is compared with Higuchi's method. The study is performed on four synthetic parametric fractal waveforms for which true fractal dimensions can be calculated, and real sleep electroencephalogram. The dependence of Katz's fractal dimension on amplitude, frequency and sampling frequency of waveforms is noted. Even though the Higuchi's method has given more accurate estimation of fractal dimensions, the study suggests that the results of Katz's based fractal dimension analysis of biomedical waveforms have to be carefully interpreted.
Resumo:
This investigation aimed to quantify metabolic rate when wearing an explosive ordnance disposal (EOD) ensemble (~33kg) during standing and locomotion; and determine whether the Pandolf load carriage equation accurately predicts metabolic rate when wearing an EOD ensemble during standing and locomotion. Ten males completed 8 trials with metabolic rate measured through indirect calorimetry. Walking in EOD at 2.5, 4.0 and 5.5km·h−1 was significantly (p < 0.05) greater than matched trials without the EOD ensemble by 49% (127W), 65% (213W) and 78% (345W), respectively. Mean bias (95% limits of agreement) between predicted and measured metabolism during standing, 2.5, 4 and 5.5km·h−1 were 47W (19 to 75W); −111W (−172 to −49W); −122W (−189 to −54W) and −158W (−245 to −72W), respectively. The Pandolf equation significantly underestimated measured metabolic rate during locomotion. These findings have practical implications for EOD technicians during training and operation and should be considered when developing maximum workload duration models and work-rest schedules.
Resumo:
Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.
Resumo:
Methods of diagnosis in Biomedical applications can be broadly divided into contact and non-contact based methods. So far, ultrasound based methods have been found to be most favorable for non-contact, non-invasive diagnosis, especially in the case of tissue stiffness analysis. We report here, the fabrication and characterization details of a new contact based transducer system for qualitative determination of the stiffnesses of non-piezoelectric substrates using the phenomenon of Surface Acoustic Waves (SAW). Preliminary trials to study the functionality of this system were carried out on various metallic and non-metallic substrates, and the results were found to be satisfactory. To confirm the suitability of this system for biomedical applications, similar trials have been conducted on tissue mimicking phantoms with varying degrees of stiffness.