998 resultados para Biology, Animal Physiology|Health Sciences, Pathology|Health Sciences, Immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from the Chicago Western Electric Study were used to investigate whether central fat distribution, as estimated by the ratio of subscapular-to-triceps skinfold, was associated with 25-year risk of death from coronary heart disease in a cohort of 1,945 middle-aged employed men. Subscapular-triceps skinfold ratio was found positively and significantly associated with risk of coronary death after adjustment for age and body mass index. The age-adjusted proportional hazards regression coefficient was 0.2078 with 95% confidence interval of 0.0087 to 0.4069. A difference of 1.1 in the subscapular-triceps skinfold ratio (the difference between the mean of the fifth quintile and of the first and second quintiles combined) was associated with a relative risk of 1.31 with 95% confidence interval of 1.06 to 1.62. The coefficient was decreased to 0.1961 (95% confidence interval of ($-$0.0028 to 0.3950) after adjustment for diastolic blood pressure, serum cholesterol and cigarette smoking as well as age and body mass index. At least some of the effect of central fat on coronary risk is probably mediated by blood pressure and serum lipids, but whether all of the effect can be accounted for blood pressure and serum lipids is uncertain.^ This study supports the concept that central fat distribution is a risk factor for 25-year risk of coronary death in middle-aged men. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the role of shark cartilage as an immune modulator, acid, salt-soluble, and phosphate-buffered saline extracts were prepared from three different commercial sources (SL, TL, FDC) of cartilage and used to stimulate human leukocytes in vitro. Duplicate leukocyte cultures were set up, each containing 50 $\mu$l of endotoxin-free extract, 200 $\mu$l of cell suspension (2.4-2.5 $\times$ 10$\sp5$ cells) and 100 $\mu$l of medium and incubated at 37$\sp\circ$C. Cultures stimulated with LPS (5 $\mu$g/ml) or medium served as the positive and negative controls, respectively. Culture supernatants were assayed for TNF$\alpha$ by ELISA. Cartilage extracts stimulated cells to release significant levels of TNF$\alpha$ (p $<$.005); the highest response was obtained with the acid extract of SL cartilage. In comparison, response to corresponding extracts of bovine cartilage was lower (p $<$.05). The stimulatory activity was reduced (85%) following proteolytic digestion, and lost when extract was heated (60$\sp\circ$C, 20 min) or treated with urea (6M), suggesting that the active component(s) is a protein. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti’s success as a vector and its geographic distribution and have implications for its vector capacity and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers (“low” 1×102 and “high” 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were funded by Colegio de Postgraduados, México. CONACyT, México. SRE, México. Ministère de l’Éducation du Québec, University of Montreal and an Operating Grant to B.D. Murphy from the Canadian Institutes of Health Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal variation in menarche, menstrual cycle length and menopause was investigated using Tremin Trust data. Too, self-reported hot flash data for women with natural and surgically-induced menopause were analyzed for rhythms.^ Menarche data from approximately 600 U.S. women born between 1940 and 1970 revealed a 6-month rhythm (first acrophase in January, double amplitude of 58%M). A notable shift from a December-January peak in menarche for those born in the 1940s and 1950s to an August-September peak for those born in the 1960s was observed. Groups of girls 8-14 and 15-17 yr old at menarche exhibited a seasonal difference in the pattern of menarche occurrence of about 6 months in relation to each other. Girls experiencing menarche during August-October were statistically significantly younger than those experiencing it at other times. Season of birth was not associated with season of menarche.^ The lengths of approximately 150,000 menstrual intervals of U.S. women were analyzed for seasonality. Menstrual intervals possibly disturbed by natural (e.g., childbirth) or other events (e.g., surgery, medication) were excluded. No 6- or 12-month rhythmicities were found for specific interval lengths (14-24, 25-31 and 32-56 days) or ages in relation to menstrual interval (9-11, 12-13, 15-19, 20-24, 25-39, 40-44 and 44 yr old and older).^ Hot flash data of 14 women experiencing natural menopause (NM) and 11 experiencing surgically-induced menopause (SIM) did not differ in frequency of hot flashes. Hot flashes in NM women exhibited 12- and 8-hr, but not 24-hr rhythmicities. Hot flashes in SIM women exhibited 24- and 12-hr, but not 8-hr, rhythmicities. Regardless of type of menopause, women with a peak frequency in hot flashes during the morning (0400 through 0950) were distinguishable from those with such in the evening (1600 through 2159).^ Data from approximately 200 U.S. women revealed a 6-month rhythm in menopause with first peak in May. No significant 12-month variation in menopause was detected by Cosinor analysis. Season of birth and age at menopause were not associated with season of menopause. Age at menopause declined significantly over the years for women born between 1907 and 1926, inclusive. ^