997 resultados para Biological width
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages.
Resumo:
We investigated the effects of ocean acidification on juvenile clams Ruditapes decussatus (average shell length 10.24 mm) in a controlled CO2 perturbation experiment. The carbonate chemistry of seawater was manipulated by diffusing pure CO2, to attain two reduced pH levels (by -0.4 and -0.7 pH units), which were compared to unmanipulated seawater. After 75 days we found no differences among pH treatments in terms of net calcification, size or weight of the clams. The naturally elevated total alkalinity of local seawater probably contributed to buffer the effects of increased pCO2 and reduced pH. Marine organisms may, therefore, show diverse responses to ocean acidification at local scales, particularly in coastal, estuarine and transitional waters, where the physical-chemical characteristics of seawater are most variable. Mortality was significantly reduced in the acidified treatments. This trend was probably related to the occurrence of spontaneous spawning events in the control and intermediate acidification treatments. Spawning, which was unexpected due to the small size of the clams, was not observed for the pH -0.7 treatment, suggesting that the increased survival under acidified conditions may have been associated with a delay in the reproductive cycle of the clams. Future research about the impacts of ocean acidification on marine biodiversity should be extended to other types of biological and ecological processes, apart from biological calcification.
Resumo:
Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated PCO2) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pHT 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pHT 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.
Resumo:
Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connecting and sustaining existing populations and colonizing new habitats. Calcified larvae are typically denser than seawater and rely on swimming to navigate vertically structured water columns. Larval sand dollars Dendraster excentricus have calcified skeletal rods supporting their bodies, and propel themselves with ciliated bands looped around projections called arms. Ciliated bands are also used in food capture, and filtration rate is correlated with band length. As a result, swimming and feeding performance are highly sensitive to morphological changes. When reared at an elevated PCO2 level (1000 ppm), larval sand dollars developed significantly narrower bodies at four and six-arm stages. Morphological changes also varied between four observed maternal lineages, suggesting within-population variation in sensitivity to changes in PCO2 level. Despite these morphological changes, PCO2 concentration alone had no significant effect on swimming speeds. However, acidified larvae had significantly smaller larval stomachs and bodies, suggesting reduced feeding performance. Adjustments to larval morphologies in response to ocean acidification may prioritize swimming over feeding, implying that negative consequences of ocean acidification are carried over to later developmental stages.
Resumo:
Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
Research has shown that road lane width impacts on driver behaviour. This literature review provides guidelines to assist in the design, construction and retrofitting of urban roads to accommodate road users' safety requirements. It focuses on the impacts of lane widths on cyclists and motor vehicle safety behaviour. The literature review commenced with a search of library databases. Peer reviewed articles and road authority (local, state and national) reports were reviewed. The majority of studies investigating the effects of lane width on driver behaviour were simulator based, while research into cycling safety involved data collected from actual traffic environments. Results show that marked road lane width influences perceived task difficulty, risk perception and possibly speed choice. The positioning of cyclists in traffic lanes is influenced by the presence of on-road cycling facilities and the total roadway width. The lateral displacement between bicycle and vehicle is smallest when a bicycle facility is present. Lower, or reduced, vehicle speeds play a significant role in improving bicyclist and pedestrian safety. It is also shown that if road lane widths in urban areas were reduced, to a functional width that was less than the current guidelines of 3.5m, it could result in a safer road environment for all road users.
Resumo:
Although placing reflective markers on pedestrians’ major joints can make pedestrians more conspicuous to drivers at night, it has been suggested that this “biological motion” effect may be reduced when visual clutter is present. We tested whether extraneous points of light affected the ability of 12 younger and 12 older drivers to see pedestrians as they drove on a closed road at night. Pedestrians wore black clothing alone or with retroreflective markings in four different configurations. One pedestrian walked in place and was surrounded by clutter on half of the trials. Another was always surrounded by visual clutter but either walked in place or stood still. Clothing configuration, pedestrian motion, and driver age influenced conspicuity but clutter did not. The results confirm that even in the presence of visual clutter pedestrians wearing biological motion configurations are recognized more often and at greater distances than when they wear a reflective vest.