998 resultados para Biological organs
Resumo:
Ediea homevalensis H. Nishida, Kudo, Pigg & Rigby gen. et sp. nov. is proposed for permineralized pollen-bearing structures from the Late Permian Homevale Station locality of the Bowen Basin, Queensland, Australia. The taxon represents unisexual fertile shoots bearing helically arranged leaves on a central axis. The more apical leaves are fertile microsporophylls bearing a pair of multi-branched stalks on their adaxial surfaces that each supports a cluster of terminally borne pollen sacs. Proximal to the fertile leaves there are several rows of sterile scale-like leaves. The pollen sacs (microsporangia) have thickened and dark, striate walls that are typical of the Arberiella type found in most pollen organs presumed to be of glossopterid affinity. An examination of pollen organs at several developmental stages, including those containing in situ pollen of the Protohaploxypinus type, provides the basis for a detailed analysis of these types of structures, which bear similarities to both compression/impression Eretmonia-type glossopterid microsporangiate organs and permineralized Eretmonia macloughlinii from Antarctica. These fossils demonstrate that at least some Late Permian pollen organs were simple microsporophyll-bearing shoot systems and not borne directly on Glossopteris leaves.
Resumo:
The primary aim of this thesis was the evaluation of the perfusion of normal organs in cats using contrast-enhanced ultrasound (CEUS), to serve as a reference for later clinical studies. Little is known of the use of CEUS in cats, especially regarding its safety and the effects of anesthesia on the procedure, thus, secondary aims here were to validate the quantitative analyzing method, to investigate the biological effects of CEUS on feline kidneys, and to assess the effect of anesthesia on splenic perfusion in cats undergoing CEUS. -- The studies were conducted on healthy, young, purpose-bred cats. CEUS of the liver, left kidney, spleen, pancreas, small intestine, and mesenteric lymph nodes was performed to characterize the normal perfusion of these organs on ten anesthetized, male cats. To validate the quantification method, the effects of placement and size of the region of interest (ROI) on perfusion parameters were investigated using CEUS: Three separate sets of ROIs were placed in the kidney cortex, varying in location, size, or depth. The biological effects of CEUS on feline kidneys were estimated by measuring urinary enzymatic activities, analyzing urinary specific gravity, pH, protein, creatinine, albumin, and sediment, and measuring plasma urea and creatinine concentrations before and after CEUS. Finally, the impact of anesthesia on contrast enhancement of the spleen was investigated by imaging cats with CEUS first awake and later under anesthesia on separate days. -- Typical perfusion patterns were found for each of the studied organs. The liver had a gradual and more heterogeneous perfusion pattern due to its dual blood flow and close proximity to the diaphragm. An obvious and statistically significant difference emerged in the perfusion between the kidney cortex and medulla. Enhancement in the spleen was very heterogeneous at the beginning of imaging, indicating focal dissimilarities in perfusion. No significant differences emerged in the perfusion parameters between the pancreas, small intestine, and mesenteric lymph nodes. -- The ROI placement and size were found to have an influence on the quantitative measurements of CEUS. Increasing the depth or the size of the ROI decreased the peak intensity value significantly, suggesting that where and how the ROI is placed does matter in quantitative analyses. --- A significant increase occurred in the urinary N-acetyl-β-D-glucosaminidase (NAG) to creatinine ratio after CEUS. No changes were noted in the serum biochemistry profile after CEUS, with the exception of a small decrease in blood urea concentration. The magnitude of the rise in the NAG/creatinine ratio was, however, less than the circadian variation reported earlier in healthy cats. Thus, the changes observed in the laboratory values after CEUS of the left kidney did not indicate any detrimental effects in kidneys. Heterogeneity of the spleen was observed to be less and time of first contrast appearance earlier in nonanesthetized cats than in anesthetized ones, suggesting that anesthesia increases heterogeneity of the feline spleen in CEUS. ---- In conclusion, the results suggest that CEUS can be used also in feline veterinary patients as an additional diagnostics aid. The perfusion patterns found in the imaged organs were typical and similar to those seen earlier in other species, with the exception of the heterogeneous perfusion pattern in the cat spleen. Differences in the perfusion between organs corresponded with physiology. Based on the results, estimation of focal perfusion defects of the spleen in cats should be performed with caution and after the disappearance of the initial heterogeneity, especially in anesthetized or sedated cats. Finally, these results indicate that CEUS can be used safely to analyze kidney perfusion also in cats. Future clinical studies are needed to evaluate the full potential of CEUS in feline medicine as a tool for diagnosing lesions in various organ systems.
Resumo:
Morphogenesis is a phenomenon of intricate balance and dynamic interplay between processes occurring at a wide range of scales (spatial, temporal and energetic). During development, a variety of physical mechanisms are employed by tissues to simultaneously pattern, move, and differentiate based on information exchange between constituent cells, perhaps more than at any other time during an organism's life. To fully understand such events, a combined theoretical and experimental framework is required to assist in deciphering the correlations at both structural and functional levels at scales that include the intracellular and tissue levels as well as organs and organ systems. Microscopy, especially diffraction-limited light microscopy, has emerged as a central tool to capture the spatio-temporal context of life processes. Imaging has the unique advantage of watching biological events as they unfold over time at single-cell resolution in the intact animal. In this work I present a range of problems in morphogenesis, each unique in its requirements for novel quantitative imaging both in terms of the technique and analysis. Understanding the molecular basis for a developmental process involves investigating how genes and their products- mRNA and proteins-function in the context of a cell. Structural information holds the key to insights into mechanisms and imaging fixed specimens paves the first step towards deciphering gene function. The work presented in this thesis starts with the demonstration that the fluorescent signal from the challenging environment of whole-mount imaging, obtained by in situ hybridization chain reaction (HCR), scales linearly with the number of copies of target mRNA to provide quantitative sub-cellular mapping of mRNA expression within intact vertebrate embryos. The work then progresses to address aspects of imaging live embryonic development in a number of species. While processes such as avian cartilage growth require high spatial resolution and lower time resolution, dynamic events during zebrafish somitogenesis require higher time resolution to capture the protein localization as the somites mature. The requirements on imaging are even more stringent in case of the embryonic zebrafish heart that beats with a frequency of ~ 2-2.5 Hz, thereby requiring very fast imaging techniques based on two-photon light sheet microscope to capture its dynamics. In each of the hitherto-mentioned cases, ranging from the level of molecules to organs, an imaging framework is developed, both in terms of technique and analysis to allow quantitative assessment of the process in vivo. Overall the work presented in this thesis combines new quantitative tools with novel microscopy for the precise understanding of processes in embryonic development.
Resumo:
Adverse effects of toxic substances on the environmental quality have become a subject of concern in recent years. Toxicity of heavy metals has never been in dispute and therefore their presence in our natural environment is undesirable. This study was undertaken to establish the capability of Perna viridis as a monitor for pollution in the Manora channel. Accumulation of Zinc, Copper, Iron and Manganese by marine mussels, sampled from Manora channel, was determined. Metal load varied markedly between individuals from the same populatin. This variability was partly accounted for systematic relationship between metal load and body weight and age. The distribution of metal between the major organs was considered, but the analysis of separate organs showed no advantage for their use as a biological monitor. comparison between Iron, Manganese, Copper and Zinc concentration in ambient sea water and in the mussel showed no clear correspondence. The results suggest that the mussel is capable of acting as a biological monitor, although may not be a good short term monitor of Iron, Manganese, Zinc and Copper. It may have potential as a long term and site comparison monitor for metals, once inherent variability is taken into account