873 resultados para Biodiesel de girassol. Resíduos. Análise térmica
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Nos últimos anos, a presença dos polímeros nos resíduos sólidos urbanos tem aumentado significativamente. Dentre todos os tipos de polímeros encontrados no lixo urbano, o polietileno de alta densidade (PEAD) ganha destaque, pois está presente em grande quantidade. A reciclagem de plásticos, neste âmbito, se configura como uma importante forma de reduzir a quantidade deste material nos lixões e aterros. Entretanto, sabe-se que os artefatos produzidos com material reciclado possuem propriedades inferiores. Outro ponto importante é o conhecimento da relação estrutura-propriedade, este conhecimento é fundamental na aplicação de qualquer material. Sendo assim, foram caracterizadas amostras de PEAD (embalagens pós-consumo) retiradas do lixo urbano através da calorimetria exploratória diferencial (DSC). Utilizando-se os modelos cinéticos de Avrami modificado e Liu, foi possível verificar que dependendo do tipo de carga ou colorante encontrado, há diferenças importantes na formação e morfologia dos cristais.
Resumo:
The biodiesel use has become important due to its renewable character and to reduce environmental impacts during the fuel burning. Theses benefit will be valid if the fuel shows good performance, chemistry stability and compatibility with engines. Biodiesel is a good fuel to diesel engines due to its lubricity. Then, the aimed of this study was to verify the physicalchemistry properties of biodiesel and their correlations with possible elastomers damage after biodiesel be used as fuel in an injection system. The methodology was divided in three steps: biodiesels synthesis by transesterification of three vegetable oil (soybean, palm and sunflower) and their physical-chemistry characterization (viscosity, oxidative stability, flash point, acidity, humidity and density); pressurized test of compatibility between elastomers (NBR and VITON) and biodiesel, and the last one, analyze of biodiesels lubricity by tribological test ball-plan( HFRR). Also, the effect of mixture of biodiesel and diesel in different concentrations was evaluated. The results showed that VITON showed better compatibility with all biodiesel blends in relation to NBR, however when VITON had contact with sunflower biodiesel and its blends the swelling degree suffer higher influences due to biodiesel humidity. For others biodiesels and theirs blends, this elastomer kept its mechanical properties constant. The better tribological performance was observed for blends with high biodiesel concentration, lower friction coefficient was obtained when palm biodiesel was used. The main mechanisms observed during the HFRR tests were abrasive and oxidative wear
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel
Resumo:
Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it
Resumo:
As regiões do Rio Capim e do Rio Jari são os principais distritos caulinitícos da Região Amazônica, detentores das maiores reservas brasileiras de caulim de alta qualidade para aplicações como cobertura de papel. O caulim é lavrado e beneficiado por três grandes companhias que são responsáveis pela geração de aproximadamente 500 mil de toneladas anuais de um resíduo decorrente da etapa de centrifugação. Esse resíduo, na forma de polpa, é depositado em lagoas de sedimentação que ocupam grandes extensões de áreas. O objetivo da pesquisa foi investigar as características físicas, químicas e mineralógicas dos resíduos processados da Região do Jari e do Capim, de modo a avaliar se atendem aos requisitos como matéria-prima para a produção de uma pozolana de alta reatividade, o metacaulim, adição mineral que incorporada ao cimento Portland proporciona alto desempenho às misturas de concreto e argamassas. Os resíduos foram caracterizados por difração de raios X, análise térmica, espectroscopia de infravermelho, microscopia eletrônica de varredura, fluorescência de raios X e difração a laser. Ambos os resíduos são constituídos por no mínimo 92% de caulinita de baixa granulometria, cujas áreas superficiais específicas são superiores a 8 m2/g e os diâmetros médios de partículas inferiores a 1 µm. Os teores de sílica livre (quartzo) não foram superiores a 3%. O alto grau de concentração de caulinita destes resíduos dispensa os rígidos parâmetros de controle de remoção de impurezas, normalmente empregados na produção deste tipo de pozolana. O caulim do Rio Jari, com quantidade de defeitos na estrutura cristalina superior ao da caulinita do Rio Capim, proporcinou maior grau de desidroxilação a uma temperatura mais baixa quando calcinado, indicando a possibilidade de redução de gastos com energia para a produção da adição mineral. Os resultados das análises foram convergentes e apontam ambos os caulins estudados como excelentes matérias-primas para a produção do metacaulim de alta reatividade.