988 resultados para Biochemical Processes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pesticide use in paddy rice production may contribute to adverse ecological effects in surface waters. Risk assessments conducted for regulatory purposes depend on the use of simulation models to determine predicted environment concentrations (PEC) of pesticides. Often tiered approaches are used, in which assessments at lower tiers are based on relatively simple models with conservative scenarios, while those at higher tiers have more realistic representations of physical and biochemical processes. This chapter reviews models commonly used for predicting the environmental fate of pesticides in rice paddies. Theoretical considerations, unique features, and applications are discussed. This review is expected to provide information to guide model selection for pesticide registration, regulation, and mitigation in rice production areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.8-2.0 angstrom resolution. Although the mode of nucleotide binding is comparable to those of other members of the ASKHA superfamily, propionate is bound at a distinct site deeper in the hydrophobic pocket defining the active site. The propionate carboxyl is at a distance of approximate to 5 angstrom from the -phosphate of the nucleotide, supporting a direct in-line transfer mechanism. The phosphoryl-transfer reaction is likely to occur via an associative S(N)2-like transition state that involves a pentagonal bipyramidal structure with the axial positions occupied by the nucleophile of the substrate and the O atom between the - and the -phosphates, respectively. The proximity of the strictly conserved His175 and Arg236 to the carboxyl group of the propionate and the -phosphate of ATP suggests their involvement in catalysis. Moreover, ligand binding does not induce global domain movement as reported in some other members of the ASKHA superfamily. Instead, residues Arg86, Asp143 and Pro116-Leu117-His118 that define the active-site pocket move towards the substrate and expel water molecules from the active site. The role of Ala88, previously proposed to be the residue determining substrate specificity, was examined by determining the crystal structures of the propionate-bound Ala88 mutants A88V and A88G. Kinetic analysis and structural data are consistent with a significant role of Ala88 in substrate-specificity determination. The active-site pocket-defining residues Arg86, Asp143 and the Pro116-Leu117-His118 segment are also likely to contribute to substrate specificity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Edku is one of the Nile Delta lakes. It is subjected to contaminations by several anthropogenic materials such as trace elements and other wastes. The distribution of the different chemical forms of copper and manganese has been studied using sequential extraction techniques. Chemical analysis of the sediments shows that CaCO sub(3) ranged from 3.7% to 9.6% and organic matter from 3.06% to 8.11%. The results indicate that the distribution of manganese among the six chemical forms in the sediments of the lake obeys the following order: Mn-residual>Mn-carbonate>Mn-moderately reducible>Mn-organic form>Mn-exchangeable > Mn-easily reducible fraction. Also, the data revealed that more than 50% of the total manganese was found in the residual form, while the remainder was distributed among the other forms. In contrast, more than 70% of the total copper content was associated with the five chemical forms (exchangeable, carbonate, easily and moderately reducible and organic forms). Generally, the enrichment of manganese in the residual form revealed the important role in building up of clay minerals, while the distribution of copper among the different forms reflects an important role in biological and biochemical processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本研究通过粗枝云杉不同种群进行的温室半控制试验,采用植物生态学、生理学和生物化学的研究方法,系统地研究了粗枝云杉不同种群抗旱性的生长、形态、生理和生化机理,并结合有关研究进行综合分析,得出主要研究结论如下: 1.粗枝云杉对干旱胁迫的综合反应 粗枝云杉在干旱胁迫下的适应机制为:(1)相对生长速率及植株结构的调整:干旱胁迫下虽然植株相对生长速率显著降低,且有相对较多的生物量向根部分配,但并未发现细根/总根比增加。(2)粗枝云杉对干旱胁迫的光合作用表现为:干旱胁迫显著地降低了控制的理想条件下的气体交换,但干旱胁迫对PSII最大光化学效率(Fv/Fm)没有影响,表明干旱并未影响到光合机构。(3)干旱还影响了很多生理生化过程,包括渗透调解物质(游离脯氨酸)、膜脂过氧化产物、脱落酸(ABA)含量的增加,以及保护酶活性的升高。这些结果证明植物遭受干旱胁迫后发生了一系列的形态、生理和生化响应,这些变化能提高干旱时期植物的存活和生长能力。 2.粗枝云杉不同种群对干旱胁迫反应的种群差异 粗枝云杉三个种群-干旱种群(四川丹巴和甘肃迭部)和湿润种群(四川黑水)对干旱适应不同,这种不同应归因于它们采用的用水策略不同:在水分良好和干旱胁迫条件下,受试种群在相对生长速率和水分利用效率(WUE)方面都表现出显著的种群间差异。与湿润种群相比,干旱种群在两种水分条件下有更高的WUE。粗枝云杉不同种群的碳同位素组分(δ13C)只在干旱胁迫下有显著差异,并且这种差异在水分良好时比干旱胁迫条件下小,说明生理响应和干旱适应性之间的关系受植物内部抗旱机制和外部环境条件(如水分可利用性)或两者互作效应的影响。这些结果说明干旱种群和湿润种群所采用的用水策略不同。干旱种群有更强的抗旱能力,采用的是节水型的用水策略,而湿润种群抗旱能力较弱,采用的是耗水型的用水策略。 3. 遮荫对粗枝云杉不同种群抗旱性影响 干旱胁迫显著降低了全光条件下叶相对含水量(RWC)、相对生长速率、气体交换参数、PSII的有效量子产量(Y),提高了非光化学猝灭效率(qN)、水分利用效率、脯氨酸(PRO)积累、脱落酸(ABA)含量及保护酶活性。然而这种变化在遮荫条件下不明显。我们得出结论适度遮荫降低了干旱对植物的胁迫作用。另一方面,在干旱条件下,与湿润种群相比,干旱种群抗旱性更强,表现在干旱种群净光合速率与单位重量上叶氮含量(Nmass)降低较少。另外,干旱种群表现出更为敏感的气孔导度,更高的热耗散能力(qN)能力、用水效率、ABA积累、保护酶活性,以及更低的总用水量、相对生长速率。这一结果表明这两种群采用不同的生理策略对干旱和遮荫做出反应。许多生长和生理反应差异与这两个种群原产地气候条件相适应。 4. 外源脱落酸(ABA)喷施对粗枝云杉不同种群抗旱性影响 外源ABA喷施在干旱和水分良好条件下均不同程度地提高了根/茎比,表明根和茎对ABA敏感程度不同。实验结果还表明,外源ABA喷施对这两个种群在干旱胁迫期间影响不同。干旱胁迫期间,伴随着ABA喷施,湿润种群净光合速率(A)显著降低,而干旱种群净光合速率变化不明显。另一方面,外源ABA喷施显著提高了干旱条件下干旱种群的单位叶面积重(LMA)、根/茎比、细根/总根(Ft)比、水分利用效率(WUE)、ABA含量, 以及保护酶活性。然而,外源ABA喷施对湿润种群的上述测定指标没有显著影响。这一结果表明干旱种群对外源ABA喷施更为敏感, 反应在更大的气孔导度降低,更高的生物量可塑性,及更高的水分利用效率、ABA含量和保护酶活性。综上所述,我们得出结论,粗枝云杉对外源ABA敏感性因种群的不同而不同。该研究结果可为两个明显不同种群在适应分化方面提供强有力的证据。 Arid or semi-arid land covers more than half of China's land territory. In arid systems, severe shortages of soil water often coincide with periods of high temperatures and high solar radiation, producing multiple stresses on plant performance. Protection from high radiation loads in shaded microenvironments during drought may compensate for a loss of productivity due to reduced irradiance when water is available. Additionally, ABA, a well-known stress-inducible plant hormone, has long been studied as a potential mediator for induction of drought tolerance in plants. Picea asperata Mast., which is one of the most important tree species used for the production of pulp wood and timber, is a prime reforestation species in western China. In this experiment, different population of P. asperata were used as experiment material to study the adaptability to drought stress and population differences in adaptabiliy, and the effects of shade and exogenous abscisic acid (ABA) application on the drought tolerance. Our results cold provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem in the arid and semi-arid area, and provide a strong evidence for adaptive differentiation of different populations, and so may be used as criteria for species selection and tree improvement. The results are as follows: 1. A large set of parallel response to drought stress Drought stress caused pronounced inhibition of the growth and increased relatively dry matter allocation into the root; drought stress also caused pronounced inhibition of photosynthesis, while drought showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm) in dark-adapted leaves, indicating that drought had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, drought reduced the quantum yield of PSII electron transport (Y) and increased the non-photochemical quenching (qN). Drought also affected many physiological and biochemical processes, including increases in superoxide dismutase (SOD), ascorbate peroxidase (APX) activities, malondialdehyde and ABA content. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods. 2. Difference in adaptation to drought stress between contrasting populations of Picea asperata There were significant population differences in growth, dry matter allocation and water use efficiency. Compared with the wet climate population (Heishui), the dry climate population (Dan ba and Jiebu) showed higher LMA, fine root/total root ratio and water use efficiency under drought-stressed treatments. The results suggested that there were different water-use strategies between the dry population and the wet population. The dry climate population with higher drought tolerance may employ a conservative water-use strategy, whereas the wet climate population with lower drought tolerance may employ a prodigal water-use strategy. These variations in drought responses may be used as criteria for species selection and tree improvement. 3. The effects of shade on the drought tolerance For both populations tested, drought resulted in lower needle relative water content (RWC), relative growth rate (RGR), gas exchange parameters and effective PSII quantum yield (Y), and higher non-photochemical quenching (qN), water use efficiency (WUE), proline (PRO) and abscisic acid (ABA) accumulation, superoxide dismutase (SOD), ascorbate peroxidase (APX) activities as well as malondialdehyde (MDA) levels and electrolyte leakage in sun plants, whereas these changes were not significant in shade plants. Our study results implied that shade, applied together with drought, ameliorated the detrimental effects of drought. On the other hand, compared with the wet climate population, the dry climate population was more tolerant to drought in the sun treatment, as indicated by less decreases in A and mass-based leaf nitrogen content (Nmass), more responsive stomata, greater capacity for non-radiative dissipation of excitation energy as heat (analysed by qN), and higher WUE,higher level of antioxidant enzyme activities,higher ABA accumulation as well as lower MDA content and electrolyte leakage. Many of the differences in growth and physiological responses reported here are consistent with the climatic differences between the locations of the populations of P. asperata. 4. The effects of exogenous abscisic acid (ABA) application on the drought tolerance For both populations tested, exogenous ABA application increased root/shoot ratio (Rs) under well-watered and drought-stressed conditions, indicating that there was differential sensitivity to ABA in the roots and shoots. However, it appeared that ABA application affected the two P. asperata populations very differently during drought. CO2 assimilation rate (A) was significantly decreased in the wet climate population, but only to a minor extent in the dry climate population following ABA application during soil drying. On the other hand, ABA application significantly decreased stomatal conductance (gs), transpiration rate (E) and malondialdehyde (MDA) content, and significantly increased leaf mass per area (LMA), Rs, fine root/total root ratio (Ft), water use efficiency (WUE), ABA contents, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities under drought condition in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet population plants. The results clearly demonstrated that the dry climate population was more responsive to ABA application than the wet climate population, as indicated by the strong stomata closure and by greater plasticity of LMA and biomass allocation, as well as by higher WUE, ABA content and anti-oxidative capacity to defense against oxidative stress, possibly predominantly by APX. We concluded that sensitivity to exogenous ABA application is population dependent in P. asperata. Our results provide strong evidence for adaptive differentiation between populations of P. asperata.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

随着全球气候变暖和温室效应加剧,干旱和荒漠化成为威胁人类生存和发展的主要 灾害,许多被子植物对干旱胁迫的生理、生态和生化响应已逐步得以报道,但很少有开 展干旱胁迫对雌雄异株植物的影响方面的研究。由于这类植物在长期进化过程中已经在 生长、性比、生殖格局、空间分布、资源配置和生物量分配等方面形成了明显的性别差 异,因此,干旱胁迫必将对其雌雄植株产生不同的生理生态影响。本研究以青杨为模式 植物,采用植物生态、生理及生物化学等研究方法,系统研究青杨雌雄植株在常温、增 温以及喷施外源脱落酸的条件下对干旱胁迫的响应,揭示其在生长形态、生物量分配、 光合作用、用水效率和生理生化等方面的性别间差异。主要研究结果如下: 1. 青杨雌雄植株对干旱胁迫的综合响应。 与较好水分条件相比,干旱胁迫显著降低了青杨雌雄植株的光合作用和生长发育, 影响了许多生理生化过程,并导致雌雄植株在生长发育、气体交换、用水效率、膜脂抗 氧化和抗氧化系统酶活性方面表现出显著的性别间差异。在较好水分条件下,雌雄植株 之间在株高、基径、生物量、净光合速率、蒸腾速率、用水效率以及丙二醛、脱落酸和 游离脯氨酸等生化物质含量方面均无显著差异。但在干旱胁迫下,雄株在生长发育、气 体交换、水分利用效率、膜脂过氧化保护和抗氧化系统酶活性方面均显著高于雌株,表 现出比雌株更高的株高、基径、叶面积、总叶片数、总生物量、总色素含量、类胡萝卜 素含量、净光合速率、蒸腾速率、羧化效率、光系统II最大光化学效率、内在水分利用 效率、碳同位素组分、过氧化氢酶和过氧化物酶活性等,而在CO2补偿点、比叶面积、 叶绿素a/b、丙二醛、脱落酸和超氧化物歧化酶活性等指标上显著低于雌株。与雌株相比, 雄株表现出更高的干旱胁迫适应能力,而雌株的生长发育和生理生化过程更易遭受干旱 胁迫的影响。 2. 干旱胁迫下的青杨雌雄植株对增温处理的综合响应 与环境温度相比,增温在干旱胁迫前后均显著促进了雌雄植株的生长发育、气体交 换,降低水分利用效率,影响生化物质含量,并促使青杨雌雄植株之间在干旱胁迫下表 现出显著的差异。在较好水分条件下,增温导致雌株的株高、基径、叶面积、总叶片数、 总生物量和超氧化物歧化酶活性显著高于雄株,而用水效率、丙二醛、脱落酸和游离脯 氨酸、抗坏血酸过氧化物酶和过氧化物酶活性低于雄株。在干旱胁迫下,增温将导致雄 株的株高、基径、叶面积、总生物量、净光合速率、蒸腾速率、气孔导度、总色素含量、 相对含水量、过氧化氢酶和抗坏血酸过氧化物酶活性等显著高于雌株,而光系统II 最大 光化学效率、内在水分利用效率、碳同位素组分、丙二醛、脱落酸、游离脯氨酸和超氧 化物歧化酶活性显著低于雌株。与雄株相比,水分较好条件下的增温有利于促进雌株的 生长发育,并在生理生态特征上优于雄株。而干旱胁迫下的增温则加剧了水分胁迫强度, 致使雌株的生长发育遭受比雄株更多的负面影响。 3. 干旱胁迫下的青杨雌雄植株对喷施外源脱落酸处理的综合响应 与对照相比,在干旱胁迫下喷施外源脱落酸可显著增加青杨雌雄植株的生长发育、 气体交换、降低水分利用效率,影响了生化物质含量,并导致青杨雌雄植株之间在干旱 胁迫下表现出显著的生理生态差异。在干旱胁迫下,喷施外源脱落酸致使雌株的株高、 叶面积、叶干重、细根干重、总生物量、净光合速率、蒸腾速率、气孔导度、光系统II 最大光化学效率、非光化学淬灭系数、相对含水量、总光合色素、类胡萝卜素、脱落酸、 超氧化物歧化酶和过氧化物酶活性的增加量显著高于雄株,而根重比、根冠比、细根/ 总根、比叶面积、内在水分利用效率、碳同位素组分、丙二醛、脯氨酸、过氧化氢酶和 抗坏血酸过氧化物酶活性等指标的减少量上显著低于雄株。与对照相比,干旱胁迫下的 喷施外源脱落酸则一定程度能减缓植株遭受胁迫的压力,促进植株生长和气体交换,减 少了植株体内的过剩自由基数量,并促使雌株的生长发育和光合能力显著提高,增强其 抗干旱胁迫能力。 With development of global warming and greenhouse effect, drought and desertification have been became main natural disasteres in resent years. Studies on ecophysiological responses of most angiosperm species to environmental stress have been reported, but little is known about dioecious plant responses to drought stress. Since significant differences on growth, survival, reproductive patterns, spatial distribution, as well as resource allocation between males and females of dioecious plant have been formed during evolutionary process, sexual different ecophysiological responses should be caused by drought stress. In this experiment, Populus cathayana Rehd. was used as model plant to study the sex-related responses to drought by using the ecological, physiological and biochemical methods under normal atmospheric temperature, elevated temperatures and exogenous abscisic acid (ABA) application treatment respectively, and to expose the sexual differences in growth, biomass allocation, photosynthesis, water use efficiency and some biochemical material contents in the males and females of dioecious plant. The results are follows: 1. A large set of parallel responses of males and females of P. cathayana to drought stress Compared with well-watered treatment, drought significantly decreased growth and photosynthesis of P. cathayana individuals, affected some physiological and biochemical processes, and induced males and females to exhibit obvious sexual differences in growth, gas exchange, water use efficiency, lipid peroxidation protection and antioxidant defenses enzyme system. Under well-watered treatment, there were no significant sexual differences in height growth (HG), basal diameter (BD), dry matter accumulation (DMA), net photosynthesis rate (A), transpiration (E), water use efficiency (WUE), and malondialdehyde (MDA), abscisic acid (ABA) and praline (Pro). However, under drought stress, males were found to exhibit higher HG, BD, leaf area (LA), total leaf number (TLA), DMA, total chlorophyll contents (TC), carotenoids content (Caro), A, E, carboxylation efficiency (CE), the maximum efficiency of PSII (Fv/Fm), intrinsic water use efficiency (WUE ), carbon isotope composition (δ13C), catalase (CAT), peroxidase (POD) and lower CO2 compensation point (Γ), specific leaf area (SLA), chlorophyll a/b ratio (Chla/Chlb), MDA, ABA and superoxide dismutase (SOD) than females. The results suggest that males possess greater drought resistance than do females and females suffer more negative effect on growth and development, physiological and biochemical processes than males under drought stress. 2. A large set of parallel responses of drought-stressed males and females of P. cathayana to elevated temperatures Compared with environmental temperature, elevated temperature treatment significant increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents of P. cathayana individuals, and induced males and females to exhibit obvious differences under drought stress. Under good water condition, elevated temperature treatment caused females to show significant higher HG, BD, LA, TLN, DMA, SOD activity, and great lower WUE, MDA, ABA, Pro, ascorbate peroxidase (APX) and POD than do males. On contrary, under drought condition, elevated temperature treatment induced males to exhibit higher HG, BD, LA, DMA, A, E, stomatal conductance (gs), relative water content (RWC), CAT, APX activity but lower Fv/Fm, WUE, δ13C, MDA, ABA, Pro, SOD activity than do females. The results suggest that females will benefit from elevating temperature under good water condition by possessing better ecophysiological processes than that of males, but will suffer from greater negative effects than do males when grown under drought stress with elevated temperature treatment. 3. A large set of parallel responses of drought-stressed males and females of P. cathayana to exogenous ABA application Compared with controls, exogenous ABA application under drought greatly increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents in P. cathayana individuals, and induced males and females to exhibit obvious sexual differences under drought. Under drought stress, exogenous ABA application induced females to exhibit more increases in HG, LA, leaf weight (LW), fine root weight (FRW), DMA, A, E, g, Fv/Fm, non-photochemical quenching coefficient (qN), RWC, TC, Caro, ABA, SOD, POD s activity than males, but to show lower decreases in root/weight ratio (RWR), root mass/foliage area ratio (RF), fine root/total root ratio (FT), SLA, WUE, δ13C, MDA, Pro, CAT, APX than males. The results suggest that exogenous ABA application under drought stress will eliminate negative damages caused by drought stress at a certain extent,promote the growth and gas exchange of plant and decrease the number of superfluous 1O2 in plant cells of males and females of P. cathayana. Furthermore, exogenous ABA application promoted more drought resistance in females than in males by increasing more growth and photosynthetic capacity in females under drought stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了连续25年长期培肥试验条件下土壤脲酶和碱性磷酸酶酶促反应的动力学和热力学特征,从酶学角度揭示长期培肥的效应。结果表明,长期培肥增加了脲酶和碱性磷酸酶酶促反应的Vmax、Vmax/Km和k值;降低了Ea、△G、△H和△S值,说明培肥能提高酶促反应速度、减小活化自由能、加快土壤中物质的生物循环过程。酶促反应动力学参数和热力学参数与土壤性质相关分析表明,酶促反应动力学参数大多依赖于土壤化学性状,基于动力学参数的土壤肥力指标体系可评价土壤肥力水平,且U-Vmax、P-Km、P-Vmax可作为土壤肥力的重要指标。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three soil spots were found in Grove Mountains, east Antarctica during 1999-2000, when the Chinare 16th Antarctic expedition teams entered the inland Antarctica. The characteristics of soils in Grove Mountains are desert pavement coating the surface, abundant water soluble salt, negligible organ matter, and severe rubification and salinization, scarces of liquid water, partly with dry permafrost, corresponding with the soils of McMurdo, Transantarctic. The soils age of Grove Mountains is 0.5-3.5Ma. Podzolization and redoximorphism are the main features in coastal Wilks region, in addition, there is strong enrichment of organic matter in many soils of this region. The main soil processes of Fildes Peninsula of King George Island include the intense physical weathering, decalcification and weakly biochemical processes. Peat accumulation is the main processes in Arctic because of humid and cold environment.Based on synthesis of heavy minerals, particle size, quartz grain surface textures, as well as pollen in soils, the soils parent materials of Grove Mountains derived from alluvial sediment of the weathering bedrocks around soils, and formed during the warm period of Pliocene. The detailed information is followed .l)The results of heavy minerals particle size showed the parent minerals derived form the weathering bedrocks around soils. 2)The quartz sand surface textures include glacial crushing and abrasion such as abrasive conchoidal fractures and grain edges, abrasive subparallel linear fractures and angularity, subaqueous environments produce V-shaped and irregular impact pits, polished surface, and chemical textures, such as beehive solution pits, which showed the water is the main force during the sediment of the soil parent minerals. 3)The pollen consist of 40 plant species, of which at least 5 species including Ranunculaceae, Chenopodiaceae, Artemisia, Gramineae, Podocarpus belong to the Neogene vegetation except the species from the old continent. Compared with Neogene vegetation of Transantarctic Mountains, Antarctic, we concluded that they grow in warm Pliocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Chemii

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galactose is metabolised to the more metabolically useful glucose 6-phosphate by the enzymes of the Leloir pathway. This pathway is necessary as the initial enzymes of glycolysis are unable to recognise galactose. In most organisms, including Saccharomyces cerevisiae, five enzymes are required to catalyse the conversion: galactose mutarotase, galactokinase, galactose 1-phosphate uridyltransferase, UDP-galactose 4-epimerase and phosphoglucomutase. The pathway has attracted interest in S. cerevisiae as it is under very strict genetic control and thus provides an excellent model for the study of gene expression in eukaryotes. In the presence of glucose the genes encoding the Leloir pathway enzymes (the GAL genes) are completely repressed through the action of a transcription factor Mig1p. Only in the presence of galactose and the absence of glucose do the concerted actions of Gal4p, Gal80p and Gal3p enable the rapid and high level activation of the GAL genes. The exact mechanism of action of these three proteins is controversial. Galactose metabolism in S. cerevisiae is also of interest because it can be exploited both in the laboratory (for high level expression of heterologous proteins and in the yeast two hybrid screen) and industrially (increasing flux through the Leloir pathway in order to make more efficient use of feedstocks with high galactose content). Recent work on the structures of the various proteins, their mechanisms of action and attempts to gain an integrated understanding of transcriptional and metabolic events will assist our understanding of both the fundamental biochemical processes and how these might be exploited commercially.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis deals with a benchmark study of dissolved and sedimentary sulphur compounds which play prominent roles in the prevailing redox conditions in the selected sites of Cochin estuarine system. Sulphur and its analogues play prominent roles in estuarine biochemical processes. A complete knowledge on the sulphur involvement in these processes is restricted due to the lacking of data on the organic sulphur compounds. Sulphate and sulphide in surface and bottom water and Sulphate, acid volatile sulphide and total sulphur in sediments were studied and correlated to know their interrelations in determining the redox condition of the environment. It also characterises the sediments of the sites on the basis of total organic carbon: total sulphur ratio. The study had attempted to decrease the concentration levels of sulphur in the sedimentary environment by the application of a remedial measure. Knowledge of sulphur uptake by plants from prior literatures has prompted to use phytoremediation for decreasing the sulphur concentration. Phytoremediation is an emerging technology that uses plants to clean up or remediate contaminated soil, sludges, sediments, and ground water through contaminant removal, degradation or containment. The plant selected was wheat grass since earlier studies have shown that wheat grass is effective in remediating pollutants particularly trace metals. So reduction in the concentration of selected trace metals was also focussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.