925 resultados para Bioactive Peptides


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kallikrein-kinin system is complex, with several bioactive peptides that are formed in many different compartments. Kinin peptides are implicated in many physiological and pathological processes including the regulation of blood pressure and sodium homeostasis, inflammatory processes, and the cardioprotective effects of preconditioning. We established a methodology for the measurement of individual kinin peptides in order to study the function of the kallikrein-kinin system. The levels of kinin peptides in tissues were higher than in blood, confirming the primary tissue localization of the kallikrein-kinin system. Moreover, the separate measurement of bradykinin and kallidin peptides in man demonstrated the differential regulation of the plasma and tissue kallikrein-kinin systems, respectively. Kinin peptide levels were increased in the heart of rats with myocardial infarction, in tissues of diabetic and spontaneously hypertensive rats, and in urine of patients with interstitial cystitis, suggesting a role for kinin peptides in the pathogenesis of these conditions. By contrast, blood levels of kallidin, but not bradykinin, peptides were suppressed in patients with severe cardiac failure, suggesting that the activity of the tissue kallikrein-kinin system may be suppressed in this condition. Both angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP) inhibitors increased bradykinin peptide levels. ACE and NEP inhibitors had different effects on kinin peptide levels in blood, urine, and tissues, which may be accounted for by the differential contributions of ACE and NEP to kinin peptide metabolism in the multiple compartments in which kinin peptide generation occurs. Measurement of the levels of individual kinin peptides has given important information about the operation of the kallikrein-kinin system and its role in physiology and disease states.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Obesity and other chronic diseases are accompanied by adipose tissue, liver, pancreas, muscle and brain low-grade chronic inflammation. Indeed, the obese condition and metabolic syndrome are characterized by an increased expression of inflammatory cytokines and infiltration of immune cells in adipocytes. The inflammatory response promotes the activation of transcriptional factors and pro-inflammatory cytokines, which can lead to an unresolved inflammatory response associated with an inhibition of insulin signalling and high risk for cardiovascular events. Epidemiological and intervention studies have been carried out to find out dietary patterns, foods and bioactive compounds with protective anti-inflammatory actions. The most studied compounds are polyphenols, especially isoflavone and anthocyanin, but quercertin, catechin and resveratrol have also been investigated. Furthermore, some studies have reported the effects of milk peptides, plant sterol and stanol, L-carnitine and alpha-lipoic acid on inflammatory processes. This review aimed to collect and discuss those relevant studies reported in the scientific literature following a systematic scientific search about the effect of such bioactive compounds on inflammation in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Milk and dairy products are important source of bioactive compounds useful to satisfy the nutritional and physiological needs of any newborns of mammalian species and useful to guarantee adequate growth and development of infants as well as provide a complete nourishment of adults. Physico-chemical, nutritional and organoleptic properties of the main constituents and the “minor” components have a crucial role in the quality of milk and milk products. Although in the past decades dietary milk fat was often regarded as harmful for the human health, recent researches suggest that milk contains specific fatty acids with nutritional and physiological health benefits. For these reasons, a major attention is given to the quantity and quality of total fat intake. In the recent years, as a result of the new concept of multifunctional agriculture and the changing behaviours about diet, consumer demands in favor of high-quality, security and safety dairy products are increased. Moreover, milk proteins and milk-derived bioactive peptides are recognized to have a high nutritive value, several health-promoting functional activities and excellent technological properties. Accordingly, growing interest in the development of functional dairy products and preparation of infant formulae for babies who cannot be breast-fed, has been give in order to meet the specific consumer’s requests. This manuscript presents the main results obtained during my PhD research aimed to evaluate the main bioactive lipids and proteins in milk and dairy products using innovative analytical techniques. The experimental section of this manuscript is divided in two sections where are reported the main results obtained during my research activities on dairy products and human milks in order to characterize their bioactive compounds for functional food applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Methodology: Recently, a computational approach was used to successfully design peptides that are new lead compounds against breast cancer. We used replica exchange molecular dynamics to predict the structure and dynamics of active peptides, leading to the discovery of smaller bioactive peptides. Conclusions: These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used along with the experimental information that led to the successful completion of this research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amphibian skin secretions are unique sources of bioactive molecules, particularly bioactive peptides. In this study, the skin secretion of the white-lipped tree frog (Litoria infrafrenata) was obtained to identify peptides with putative therapeutic potential. By utilizing skin secretion-derived mRNA, a cDNA library was constructed, a frenatin gene was cloned and its encoded peptides were deduced and confirmed using RP-HPLC, MALDI-TOF and MS/MS. The deduced peptides were identified as frenatin 4.1 (GFLEKLKTGAKDFASAFVNSIKGT) and a post-translationally modified peptide, frenatin 4.2 (GFLEKLKTGAKDFASAFVNSIK.NH2). Antimicrobial activity of the peptides was assessed by determining their minimal inhibitory concentrations (MICs) using standard model microorganisms. Through studying structure–activity relationships, analogues of the two peptides were designed, resulting in synthesis of frenatin 4.1a (GFLEKLKKGAKDFASALVNSIKGT) and frenatin 4.2a (GFLLKLKLGAKLFASAFVNSIK.NH2). Both analogues exhibited improved antimicrobial activities, especially frenatin 4.2a, which displayed significant enhancement of broad spectrum antimicrobial efficiency. The peptide modifications applied in this study, may provide new ideas for the generation of leads for the design of antimicrobial peptides with therapeutic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies on the therapeutic potential of venom peptides have significantly advanced the development of new peptide drugs. A good example is captopril, a synthetic peptide drug, which acts as an anti-hypertensive and potentiating bradykinin, inhibiting the angiotensin-converting enzyme, whose precursor was isolated from the venom of Bothrops jararacussu. The natriuretic peptide (NPs) family comprises three members, ANP (atrial natriuretic peptide), BNP (B-type natriuretic peptide) and CNP (C-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. In this study, we describe, for the first time, the isolation and characterization of a novel natriuretic-like peptide (Coa_NP), isolated from Crotalus Oreganus abyssus venom. The peptide has 32 amino acids and its complete sequence is SKRLSNGCFGLKLDRIGAMSGLGCWRLINESK. The Coa_NP has an average molecular mass of 3510.98 Da and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides (17 amino acids, NP domain consensus; CFGXXXDRIXXXSGLGC). Coa_NP is a natriuretic peptide of the ANP/BNP-like family, since the carboxy terminal region of CNP has its own NP domain. The functional experiments showed that Coa_NP produced biological effects similar to those of the other natriuretic peptides: (1) a dose-dependent decrease in mean arterial pressure; (2) significant increases in plasma nitrite levels, and (3) vasorelaxation in thoracic aortic rings that were pre-contracted with phenylephrine. The structural and biological aspects confirm Coa_NP as a natriuretic peptide isolated from snake venom, thus expanding the diversification of venom components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the hormonal pathway controlling genotype-specific norms of reaction would shed light on the ecological factors to which each genotype is adapted. Environmentally mediated changes in the sign and magnitude of covariations between heritable melanin-based colouration and fitness components are frequent, revealing that extreme melanin-based phenotypes can display different physiological states depending on the environment. Yet, the hormonal mechanism underlying this phenomenon is poorly understood. One novel hypothesis proposes that these covariations stem from pleiotropic effects of the melanocortin system. Melanocortins are post-translationally modified bioactive peptides derived from the POMC prohormone that are involved in melanogenesis, anti-inflammation, energy homeostasis and stress responses. Thus, differential regulation of fitness components in relation to environmental factors by pale and dark melanic individuals may be due to colour-specific regulation of the POMC prohormone. Accordingly, we found that the degree of reddish melanic colouration was negatively correlated with blood circulating levels of the POMC prohormone in female tawny owls (Strix aluco) rearing a brood for which the size was experimentally reduced, but not when enlarged, and in females located in rich but not in poor territories. Our findings support the hypothesis that the widespread links between melanin-based colouration and fitness components may be mediated, at least in part, by the melanocortin system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of different process -defatting, protein concentration, thermal treatment, hydrolysis with Alcalase and in vitro digestion- on the antioxidant capacity of amaranth seeds was studied. The antioxidant capacity of the products was determined in methanolic and aqueous extracts and varied from 1.00 to 21.22 and 4.97 to 369.18 µ mol TE/g sample for DPPH and ORAC assays, respectively. The combination of protein concentration and hydrolysis with Alcalase led to products with higher antioxidant activity. However, after in vitro digestion, protein concentrate and its hydrolysate showed similar antioxidant capacity. A high correlation was observed between the antioxidant capacity and the total phenolic content for methanolic extracts, with r² values ranging from 0.6133 to 0.9352.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have shown the beneficial effect of peptides, an unexploited source could be Phaseolus lunatus being an important raw material for those functional products in order to improve their utilization. In addition to improve the beneficial effect of bioactive peptides the microencapsulation could be a way to protect the peptides against the environment to which they are exposed. P. lunatus protein fraction (<10 kDa of weight) was encapsulated using a blend of carboxymethylated flamboyant gum (CFG) and sodium alginate (SA) at different concentrations of CaCl2 and hardening times. After in vitro digestion of microcapsules the residual activity, in the intestinal system, both inhibition of agiotensin-converting enzyme (I-ACE) and antioxidant activity obtained were in a range of 0.019-0.136 mg/mL and 570.64-813.54 mM of TEAC respectively. The microencapsulation employed CFG/SA blends could be used controlled delivery of peptide fractions with potential use as a nutraceutical or therapeutic agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS), 14.5 to 17.7% (DPPH) and 222.6 to 684.9 µM Trolox (FRAP), when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS), 9.5 to 18.5% (DPPH) and 168.0 to 360.3 µM Trolox (FRAP), when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.