962 resultados para Binary Optical Element


Relevância:

80.00% 80.00%

Publicador:

Resumo:

控制由机械装夹方式所引入的波前畸变以提高惯性约束聚变(ICF)输出光束的质量,是在大口径钕玻璃片主放大器结构设计中必须考虑的。提出了一种新的有限元变形结果与光学元件面形畸变之间的数据处理方式,并与传统方式进行了对比。基于新的数据处理接口,利用光机集成分析方法对大口径八边形钕玻璃片的支撑系统结构设计参数进行优化。优化的结果保证了由支撑系统引起的透过波前畸变小于十分之一波长,同时波前畸变与设计参数变动的相关性最小。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种获取平面光学元件光圈数的方法。通过确定一幅干涉条纹图像中三块测试区域及相应的搜索区域,寻找条纹弯曲量的平均值和相应条纹间距的平均值,根据测试区域对应的权重系数,得到被测平面光学元件光圈数的最佳估计值。通过测量标准光圈并比较目视判读结果,得到最大相对误差为5%。实验结果表明,该方法提高了处理干涉条纹图像的适应性,并可替代人工目视判读干涉条纹图像。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that millimetre waves can pass through clothing. In short range applications such as in the scanning of people for security purposes, operating at W band can be an advantage. The size of the equipment is decreased when compared to operation at Ka band and the equipments have similar performance.

In this paper a W band mechanically scanned imager designed for imaging weapons and contraband hidden under clothing is discussed. This imager is based on a modified folded conical scan technology previously reported. In this design an additional optical element is added to give a Cassegrain configuration in image space. This increases the effective focal length and enables improved sampling of the image and provides more space for the receivers. This imager is constructed from low cost materials such as polystyrene, polythene and printed circuit board materials. The trade off between image spatial resolution and thermal sensitivity is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here, we demonstrate the use of a colloidal CdSe:Te quantum dots suspension as active liquid-core in a specially designed optical element, based on a double-clad optical fiber structure. The liquid-core fiber was realized by filling the hollow core of a capillary and waveguiding of the core was ensured by using a liquid host that exhibits a larger refractive index than the cladding material of the capillary. Since the used capillary possessed a cladding waveguide structure, we obtained a liquid-core double-clad structure. To seal the liquid-core fiber and e.g. prevent the formation of bubbles, we developed a technique based on SMA connectors. The colloidal CdSe:Te quantum dots were excited by cladding-pumping using a pump laser at 532nm operating in the continuous-wave regime. We investigated the photoluminescence emitted from the colloidal CdSe:Te quantum dots suspension liquid-core and guided by the double-clad fiber structure. We observed a red shift of the (core) emission, that depends on the liquid-core fiber length and the pump power. This shift is due to the absorption of unexcited colloidal quantum dots and due to the waveguiding properties of the core. Here we report a core photoluminescence output power of 79.2μW (with an integrated brightness of ≈ 215.5 W/cm2sr ). Finally, we give an explanation, why lasing could not be observed in our experiments when setup as a liquid-core fiber cavity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of a novel optical design for the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) that utilizes a built-in spectrum splitting concept is presented. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it. The POE and SOE perform Köhler integration to produce light homogenization on the receiver. The system uses a combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-PointContact (BPC) silicon cell for efficient spectral utilization, and an external confinement technique for recovering the 3J cell’s reflection. A design target of an “equivalent” cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level greater than 500X with a wide acceptance angle of ±1º. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of ±1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal grid lines are a vital element in multijunction solar cells in order to take out from the cell the generated photocurrent. Nevertheless all this implies certain shadowing factor and thus certain reflectivity on cells surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. It has been possible thanks to the recent invention of the advanced Köhler concentrators by LPI, likely to integrate one of these cavities easily. We have proven the excellent performance of these cavities integrated in this kind of CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell=25ºC and relative efficiency and Isc gains of over 6%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP∕GaInAs∕Ge 3J cell and a concentration Back‐Point‐Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell′s reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free‐form RXI‐type concentrator with a band‐pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band‐pass filter sends the IR photons in the 900–1200 nm band to the silicon cell. Computer simulations predict that four‐terminal terminal designs could achieve ∼46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof‐of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ∼ 100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multijunction solar cells present a certain reflectivity on its surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. We have proven the excellent performance of these cavities integrated in CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell  =  25 °C and relative efficiency and Isc gains of over 6%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg? = ?1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP?=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La concentración fotovoltaica (CPV) es una de las formas más prometedoras de reducir el coste de la energía proveniente del sol. Esto es posible gracias a células solares de alta eficiencia y a una significativa reducción del tamaño de la misma, que está fabricada con costosos materiales semiconductores. Ambos aspectos están íntimamente ligados ya que las altas eficiencias solamente son posibles con materiales y tecnologías de célula caros, lo que forzosamente conlleva una reducción del tamaño de la célula si se quiere lograr un sistema rentable. La reducción en el tamaño de las células requiere que la luz proveniente del sol ha de ser redirigida (es decir, concentrada) hacia la posición de la célula. Esto se logra colocando un concentrador óptico encima de la célula. Estos concentradores para CPV están formados por diferentes elementos ópticos fabricados en materiales baratos, con el fin de reducir los costes de producción. El marco óptimo para el diseño de concentradores es la óptica anidólica u óptica nonimaging. La óptica nonimaging fue desarrollada por primera vez en la década de los años sesenta y ha ido evolucionando significativamente desde entonces. El objetivo de los diseños nonimaging es la transferencia eficiente de energía entre la fuente y el receptor (sol y célula respectivamente, en el caso de la CPV), sin tener en cuenta la formación de imagen. Los sistemas nonimaging suelen ser simples, están compuestos de un menor número de superficies que los sistemas formadores de imagen y son más tolerantes a errores de fabricación. Esto hace de los sistemas nonimaging una herramienta fundamental, no sólo en el diseño de concentradores fotovoltaicos, sino también en el diseño de otras aplicaciones como iluminación, proyección y comunicaciones inalámbricas ópticas. Los concentradores ópticos nonimaging son adecuados para aplicaciones CPV porque el objetivo no es la reproducción de una imagen exacta del sol (como sería el caso de las ópticas formadoras de imagen), sino simplemente la colección de su energía sobre la célula solar. Los concentradores para CPV pueden presentar muy diferentes arquitecturas y elementos ópticos, dando lugar a una gran variedad de posibles diseños. El primer elemento óptico que es atravesado por la luz del sol se llama Elemento Óptico Primario (POE en su nomenclatura anglosajona) y es el elemento más determinante a la hora de definir la forma y las propiedades del concentrador. El POE puede ser refractivo (lente) o reflexivo (espejo). Esta tesis se centra en los sistemas CPV que presentan lentes de Fresnel como POE, que son lentes refractivas delgadas y de bajo coste de producción que son capaces de concentrar la luz solar. El capítulo 1 expone una breve introducción a la óptica geométrica y no formadora de imagen (nonimaging), explicando sus fundamentos y conceptos básicos. Tras ello, la integración Köhler es presentada en detalle, explicando sus principios, válidos tanto para aplicaciones CPV como para iluminación. Una introducción a los conceptos fundamentales de CPV también ha sido incluida en este capítulo, donde se analizan las propiedades de las células solares multiunión y de los concentradores ópticos empleados en los sistemas CPV. El capítulo se cierra con una descripción de las tecnologías existentes empleadas para la fabricación de elementos ópticos que componen los concentradores. El capítulo 2 se centra principalmente en el diseño y desarrollo de los tres concentradores ópticos avanzados Fresnel Köhler que se presentan en esta tesis: Fresnel-Köhler (FK), Fresnel-Köhler curvo (DFK) y Fresnel-Köhler con cavidad (CFK). Todos ellos llevan a cabo integración Köhler y presentan una lente de Fresnel como su elemento óptico primario. Cada uno de estos concentradores CPV presenta sus propias propiedades y su propio procedimiento de diseño. Además, presentan todas las características que todo concentrador ha de tener: elevado factor de concentración, alta tolerancia de fabricación, alta eficiencia óptica, irradiancia uniforme sobre la superficie de la célula y bajo coste de producción. Los concentradores FK y DFK presentan una configuración de cuatro sectores para lograr la integración Köhler. Esto quiere decir que POE y SOE se dividen en cuatro sectores simétricos cada uno, y cada sector del POE trabaja conjuntamente con su correspondiente sector de SOE. La principal diferencia entre los dos concentradores es que el POE del FK es una lente de Fresnel plana, mientras que una lente curva de Fresnel es empleada como POE del DFK. El concentrador CFK incluye una cavidad de confinamiento externo integrada, que es un elemento óptico capaz de recuperar los rayos reflejados por la superficie de la célula con el fin de ser reabsorbidos por la misma. Por tanto, se aumenta la absorción de la luz, lo que implica un aumento en la eficiencia del módulo. Además, este capítulo también explica un método de diseño alternativo para los elementos faceteados, especialmente adecuado para las lentes curvas como el POE del DFK. El capítulo 3 se centra en la caracterización y medidas experimentales de los concentradores ópticos presentados en el capítulo 2, y describe sus procedimientos. Estos procedimientos son en general aplicables a cualquier concentrador basado en una lente de Fresnel, e incluyen tres tipos principales de medidas experimentales: eficiencia eléctrica, ángulo de aceptancia y uniformidad de la irradiancia en el plano de la célula. Los resultados que se muestran a lo largo de este capítulo validarán a través de medidas a sol real las características avanzadas que presentan los concentradores Köhler, y que se demuestran en el capítulo 2 mediante simulaciones de rayos. Cada concentrador (FK, DFK y CFK) está diseñado y optimizado teniendo en cuenta condiciones de operación realistas. Su rendimiento se modela de forma exhaustiva mediante el trazado de rayos en combinación con modelos distribuidos para la célula. La tolerancia es un asunto crítico de cara al proceso de fabricación, y ha de ser máxima para obtener sistemas de producción en masa rentables. Concentradores con tolerancias limitadas generan bajadas significativas de eficiencia a nivel de array, causadas por el desajuste de corrientes entre los diferentes módulos (principalmente debido a errores de alineación en la fabricación). En este sentido, la sección 3.5 presenta dos métodos matemáticos que estiman estas pérdidas por desajuste a nivel de array mediante un análisis de sus curvas I-V, y por tanto siendo innecesarias las medidas a nivel de mono-módulo. El capítulo 3 también describe la caracterización indoor de los elementos ópticos que componen los concentradores, es decir, de las lentes de Fresnel que actúan como POE y de los secundarios free-form. El objetivo de esta caracterización es el de evaluar los adecuados perfiles de las superficies y las transmisiones ópticas de los diferentes elementos analizados, y así hacer que el rendimiento del módulo sea el esperado. Esta tesis la cierra el capítulo 4, en el que la integración Köhler se presenta como una buena alternativa para obtener distribuciones uniformes en aplicaciones de iluminación de estado sólido (iluminación con LED), siendo particularmente eficaz cuando se requiere adicionalmente una buena mezcla de colores. En este capítulo esto se muestra a través del ejemplo particular de un concentrador DFK, el cual se ha utilizado para aplicaciones CPV en los capítulos anteriores. Otra alternativa para lograr mezclas cromáticas apropiadas está basada en un método ya conocido (deflexiones anómalas), y también se ha utilizado aquí para diseñar una lente TIR aplanética delgada. Esta lente cumple la conservación de étendue, asegurando así que no hay bloqueo ni dilución de luz simultáneamente. Ambos enfoques presentan claras ventajas sobre las técnicas clásicas empleadas en iluminación para obtener distribuciones de iluminación uniforme: difusores y mezcla caleidoscópica mediante guías de luz. ABSTRACT Concentrating Photovoltaics (CPV) is one of the most promising ways of reducing the cost of energy collected from the sun. This is possible thanks to both, very high-efficiency solar cells and a large decrease in the size of cells, which are made of costly semiconductor materials. Both issues are closely linked since high efficiency values are only possible with expensive cell materials and technologies, implying a compulsory area reduction if cost-effectiveness is desired. The reduction in the cell size requires that light coming from the sun must be redirected (i.e. concentrated) towards the cell position. This is achieved by placing an optical concentrator system on top of the cell. These CPV concentrators consist of different optical elements manufactured on cheap materials in order to maintain low production costs. The optimal framework for the design of concentrators is nonimaging optics. Nonimaging optics was first developed in the 60s decade and has been largely developed ever since. The aim of nonimaging devices is the efficient transfer of light power between the source and the receiver (sun and cell respectively in the case of CPV), disregarding image formation. Nonimaging systems are usually simple, comprised of fewer surfaces than imaging systems and are more tolerant to manufacturing errors. This renders nonimaging optics a fundamental tool, not only in the design of photovoltaic concentrators, but also in the design of other applications as illumination, projection and wireless optical communications. Nonimaging optical concentrators are well suited for CPV applications because the goal is not the reproduction of an exact image of the sun (as imaging optics would provide), but simply the collection of its energy on the solar cell. Concentrators for CPV may present very different architectures and optical elements, resulting in a vast variety of possible designs. The first optical element that sunlight goes through is called the Primary Optical Element (POE) and is the most determinant element in order to define the shape and properties of the whole concentrator. The POE can be either refractive (lens) or reflective (mirror). This thesis focuses on CPV systems based on Fresnel lenses as POE, which are thin and inexpensive refractive lenses able to concentrate sunlight. Chapter 1 exposes a short introduction to geometrical and nonimaging optics, explaining their fundamentals and basic concepts. Then, the Köhler integration is presented in detail, explaining its principles, valid for both applications: CPV and illumination. An introduction to CPV fundamental concepts is also included in this chapter, analyzing the properties of multijunction solar cells and optical concentrators employed in CPV systems. The chapter is closed with a description of the existing technologies employed for the manufacture of optical elements composing the concentrator. Chapter 2 is mainly devoted to the design and development of the three advanced Fresnel Köhler optical concentrators presented in this thesis work: Fresnel-Köhler (FK), Dome-shaped Fresnel-Köhler (DFK) and Cavity Fresnel-Köhler (CFK). They all perform Köhler integration and comprise a Fresnel lens as their Primary Optical Element. Each one of these CPV concentrators presents its own characteristics, properties and its own design procedure. Their performances include all the key issues in a concentrator: high concentration factor, large tolerances, high optical efficiency, uniform irradiance on the cell surface and low production cost. The FK and DFK concentrators present a 4-fold configuration in order to perform the Köhler integration. This means that POE and SOE are divided into four symmetric sectors each one, working each POE sector with its corresponding SOE sector by pairs. The main difference between both concentrators is that the POE of the FK is a flat Fresnel lens, while a dome-shaped (curved) Fresnel lens performs as the DFK’s POE. The CFK concentrator includes an integrated external confinement cavity, which is an optical element able to recover rays reflected by the cell surface in order to be re-absorbed by the cell. It increases the light absorption, entailing an increase in the efficiency of the module. Additionally, an alternative design method for faceted elements will also be explained, especially suitable for dome-shaped lenses as the POE of the DFK. Chapter 3 focuses on the characterization and experimental measurements of the optical concentrators presented in Chapter 2, describing their procedures. These procedures are in general applicable to any Fresnel-based concentrator as well and include three main types of experimental measurements: electrical efficiency, acceptance angle and irradiance uniformity at the solar cell plane. The results shown along this chapter will validate through outdoor measurements under real sun operation the advanced characteristics presented by the Köhler concentrators, which are demonstrated in Chapter 2 through raytrace simulation: high optical efficiency, large acceptance angle, insensitivity to manufacturing tolerances and very good irradiance uniformity on the cell surface. Each concentrator (FK, DFK and CFK) is designed and optimized looking at realistic performance characteristics. Their performances are modeled exhaustively using ray tracing combined with cell modeling, taking into account the major relevant factors. The tolerance is a critical issue when coming to the manufacturing process in order to obtain cost-effective mass-production systems. Concentrators with tight tolerances result in significant efficiency drops at array level caused by current mismatch among different modules (mainly due to manufacturing alignment errors). In this sense, Section 3.5 presents two mathematical methods that estimate these mismatch losses for a given array just by analyzing its full-array I-V curve, hence being unnecessary any single mono-module measurement. Chapter 3 also describes the indoor characterization of the optical elements composing the concentrators, i.e. the Fresnel lenses acting as POEs and the free-form SOEs. The aim of this characterization is to assess the proper surface profiles and optical transmissions of the different elements analyzed, so they will allow for the expected module performance. This thesis is closed by Chapter 4, in which Köhler integration is presented as a good approach to obtain uniform distributions in Solid State Lighting applications (i.e. illumination with LEDs), being particularly effective when dealing with color mixing requirements. This chapter shows it through the particular example of a DFK concentrator, which has been used for CPV applications in the previous chapters. An alternative known method for color mixing purposes (anomalous deflections) has also been used to design a thin aplanatic TIR lens. This lens fulfills conservation of étendue, thus ensuring no light blocking and no light dilution at the same time. Both approaches present clear advantages over the classical techniques employed in lighting to obtain uniform illumination distributions: diffusers and kaleidoscopic lightpipe mixing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parallel processing systems require complex interconnection networks. In order to obtain fast and flexible communications at a reasonable cost, different types of networks has been studied in the past. None of them can be considered best. The cost-effectiveness of a particular network design depends of several factors that will not be treat here. Nevertheless, the basic device that configurate an interconnection network can be the same for most of them. In this way, an Optical Interconetion Network made with Holographic Optical Element (HOE) is presented. The HOE recording way use present special caracteristics that are described. A Perfect Shuffle and Banyan networks has been implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After construction of the LYSS (Light cYcling Stressing Source) in early 2014, several CPV receivers, with and without secondary optical element (SOE) have been aged under fast transient illumination cycling,. The test plan for Madrid consisted of 50000 cycles. Receivers with poor heat spreaders showed low reliability but those with thicker metal layers passed the test well. The operation of LYSS along 8 months, after more than 250000 cycles, did not show any significant failure, except lamp reposition every 120 hours, in average. The equipment seems valid for unveiling weak receiver designs with respect to intensive illumination, in steady and transient modes.