969 resultados para Bimolecular recombination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three species of flatworms from the genus Echinococcus (E. granulosus, E. multilocularis and E. vogeli) and four strains of E. granulosus (cattle, horse, pig and sheep strains) were analysed by the PCR-SSCP method followed by sequencing, using as targets two non-coding and two coding (one nuclear and one mitochondrial) genomic regions. The sequencing data was used to evaluate hypothesis about the parasite breeding system and the causes of genetic diversification. The calculated recombination parameters suggested that cross-fertilisation was rare in the history of the group. However, the relative rates of substitution in the coding sequences showed that positive selection (instead of purifying selection) drove the evolution of an elastase and neutrophil chemotaxis inhibitor gene (AgB/1). The phylogenetic analyses revealed several ambiguities, indicating that the taxonomic status of the E. granulosus horse strain should be revised

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic diversity of three temperate fruit tree phytoplasmas ‘Candidatus Phytoplasma prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68% according to species. Percentage of substitution varied between 9 and 12% for aceF, whereas it was between 5 and 6% for pnp and secY. In the case of ‘Ca P. prunorum’ the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of ‘Ca. P. prunorum’, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese ‘Ca. P. pyri’ isolates showed that they shared some alleles with ‘Ca. P. prunorum’, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: An improved understanding of how recombination affects the evolutionary history of HIV is crucial to understand its current and future evolution. The present review aims to disentangle the manifold effects of recombination on HIV by discussing its effects on the evolutionary history and the adaptive potential of HIV in the context of concepts from evolutionary genetics and genomics. RECENT FINDINGS: The increasing occurrence of secondary contacts between divergent subtype populations (during coinfection) results in increased observations of recombinants worldwide. Recombination is heterogeneous along the HIV genome. Consequences of recombination of HIV evolution are, in combination with other demographic processes, expected to either homogenize the genetic composition of HIV populations (homogenization) or provide the potential for novel adaptations (diversification). New methods in population genomics allow deep characterization of recombinant genome (the segment composition and origin) and their evolutionary trajectories. SUMMARY: HIV recombinants increase worldwide and invade geographical regions where pure subtypes were previously predominant. This trend is expected to continue in the future, as ease to travel worldwide increases opportunities for recombination between divergent HIV strains. While the effects of recombination in HIV are much researched, more effort is required to characterize current HIV recombinant composition and dynamics. This can be achieved with new population genetic and genomic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paul Howard-Flanders et al proposed a molecular model of RecA-mediated recombination reaction six years ago. How does this model stand at present? In answering this question, we focus on two leading ideas of the original model, namely the proposal of the coaxial arrangement of the aligned DNA molecules within helical RecA filaments and the proposal of the ATP independence of the pairing stage of the recombination reaction. Results obtained after the model was proposed are reviewed and compared with these original assumptions and postulates of the model. EM visualization of recombining DNA molecules, studies of the energetics of the RecA-mediated recombination reaction and biochemical analysis of deproteinized joint molecules are fully consistent with a triple-stranded DNA arrangement during the RecA-mediated recombination reaction and demonstrate the ATP independence of the pairing stage of the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population structure of Staphylococcus aureus is generally described as highly clonal and is consequently subdivided into several clonal complexes (CCs). Recent data suggested that recombination might occur more frequently within than among CCs. To test this hypothesis as well as to understand how genetic diversity is created in S. aureus, we analyzed a collection of 182 isolates with MLST and five highly variable core adhesion (ADH) genes. As expected the polymorphism of ADH genes was higher than MLST genes. However both categories of genes showed low within CCs diversity with a dominant haplotype and its single nucleotide variants. Several recombination events were detected but none involved intra-CC recombination. This did not confirm the hypothesis of higher recombination within CCs. Nevertheless, molecular analyses of variance indicated that these few recombination events have a significant impact on the genetic diversity within CCs. In addition, although most ADH genes were under purifying selection, signs of positive selection associated with a recombinant group were detected. These data highlight the importance of recombination on the evolution of the highly clonal S. aureus and suggest that recombination when combined with demographic mechanisms as well as selection might favor the rapid creation of new clonal complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deep understanding of the recombination dynamics of ZnO nanowires NWs is a natural step for a precise design of on-demand nanostructures based on this material system. In this work we investigate the influence of finite-size on the recombination dynamics of the neutral bound exciton around 3.365 eV for ZnO NWs with different diameters. We demonstrate that the lifetime of this excitonic transition decreases with increasing the surface-to-volume ratio due to a surface induced recombination process. Furthermore, we have observed two broad transitions around 3.341 and 3.314 eV, which were identified as surface states by studying the dependence of their life time and intensitiy with the NWs dimensions.