967 resultados para Bifurcation diagram


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we use the 0-1 test to identify chaotic motions. The main objective of this study is to eliminate chaotic behavior of the chassis and reduce its vibrations. To accomplish this, a semi-active vehicle suspension control system, using magneto-rheological dampers, is proposed. The proposed semi-active control strategy consists of two nonlinear control laws: a feedforward control, and a feedback control. They are obtained by considering the SDRE (State Dependent Riccati Equation) control, where the control parameter is the voltage applied to the coils of the magneto-rheological dampers. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing, therefore, passenger comfort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La configuración de un cilindro acoplado a una semi-esfera, conocida como ’hemispherecylinder’, se considera como un modelo simplificado para numerosas aplicaciones industriales tales como fuselaje de aviones o submarinos. Por tanto, el estudio y entendimiento de los fenómenos fluidos que ocurren alrededor de dicha geometría presenta gran interés. En esta tesis se muestra la investigación del origen y evolución de los, ya conocidos, patrones de flujo (burbuja de separación, vórtices ’horn’ y vórtices ’leeward’) que se dan en esta geometría bajo condiciones de flujo separado. Para ello se han llevado a cabo simulaciones numéricas (DNS) y ensayos experimentales usando la técnica de Particle Image Velocimetry (PIV), para una variedad de números de Reynolds (Re) y ángulos de ataque (AoA). Se ha aplicado sobre los resultados numéricos la teoría de puntos críticos obteniendo, por primera vez para esta geometría, un diagrama de bifurcaciones que clasifica los diferentes regímenes topológicos en función del número de Reynolds y del ángulo de ataque. Se ha llevado a cabo una caracterización completa sobre el origen y la evolución de los patrones estructurales característicos del cuerpo estudiado. Puntos críticos de superficie y líneas de corriente tridimensionales han ayudado a describir el origen y la evolución de las principales estructuras presentes en el flujo hasta alcanzar un estado de estabilidad desde el punto de vista topológico. Este estado se asocia con el patrón de los vórtices ’horn’, definido por una topología característica que se encuentra en un rango de números de Reynolds muy amplio y en regímenes compresibles e incompresibles. Por otro lado, con el objeto de determinar las estructuras presentes en el flujo y sus frecuencias asociadas, se han usado distintas técnicas de análisis: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) y análisis de Fourier. Dichas técnicas se han aplicado sobre los datos experimentales y numéricos, demostrándose la buena concordancia entre ambos resultados. Finalmente, se ha encontrado en ambos casos, una frecuencia dominante asociada con una inestabilidad de los vórtices ’leeward’. ABSTRACT The hemisphere-cylinder may be considered as a simplified model for several geometries found in industrial applications such as aircrafts’ fuselages or submarines. Understanding the complex flow phenomena that surrounds this particular geometry is therefore of major industrial interest. This thesis presents an investigation of the origin and evolution of the complex flow pattern; i.e. separation bubbles, horn vortices and leeward vortices, around the hemisphere-cylinder under separated flow conditions. To this aim, threedimensional Direct Numerical Simulations (DNS) and experimental tests, using Particle Image Velocimetry (PIV) techniques, have been performed for a variety of Reynolds numbers (Re) and angles of attack (AoA). Critical point theory has been applied to the numerical simulations to provide, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and the angle of attack. A complete characterization about the origin and evolution of the complex structural patterns of this geometry has been put in evidence. Surface critical points and surface and volume streamlines were able to describe the main flow structures and their strong dependence with the flow conditions up to reach the structurally stable state. This state was associated with the pattern of the horn vortices, found on ranges from low to high Reynolds numbers and from incompressible to compressible regimes. In addition, different structural analysis techniques have been employed: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and Fourier analysis. These techniques have been applied to the experimental and numerical data to extract flow structure information (i.e. modes and frequencies). Experimental and numerical modes are shown to be in good agreement. A dominant frequency associated with an instability of the leeward vortices has been identified in both, experimental and numerical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.