949 resultados para Bifidobacterium breve


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using ‘prebiotics’, which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a ‘synbiotic’. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate–chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6 h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 log CFU/mL cells in acid, an improvement over alginate–chitosan microencapsulation of 1.4 log CFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imbalance in the resident microbiota may promote the growth of opportunistic microorganisms, such as yeasts of Candida genus and the development of diseases, especially in aged people. This study evaluated whether the consumption of the probiotic Yakult LB® (Lactobacillus casei and Bifidobacterium breve) was able to influence on the specific immunological response against Candida and on the presence of these yeasts in the oral cavity of 42 healthy aged individuals. Saliva samples were collected before and after the probiotic use for 30 days, 3 times a week. The samples were plated in Dextrose Saboraud Agar with chloramphenicol, the colony-forming units (CFU/mL) were counted and the Candida species were identified. Anti-Candida IgA analysis was conducted using the ELISA technique. ANOVA and Student's t-test were used for normally distributed data and the Wilcoxon test was used for data with non-normal distribution (α=0.05). The results showed a statistically significant reduction (p<0.05) in Candida prevalence (from 92.9% to 85.7%), in CFU/mL counts of Candida and in the number of non-albicans species after consumption of the probiotic. Immunological analysis demonstrated a significant increase (p<0.05) in anti-Candida IgA levels. In conclusion, probiotic bacteria reduced Candida numbers in the oral cavity of the elderly and increased specific secretory immune response against these yeasts, suggesting its possible use in controlling oral candidosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gut microbial acquisition during the early stage of life is an extremely important event since it affects the health status of the host. In this contest the healthy properties of the genus Bifidobacterium have a central function in newborns. The aim of this thesis was to explore the dynamics of the gut microbial colonization in newborns and to suggest possible strategies to maintain or restore a correct balance of gut bacterial population in infants. The first step of this work was to review the most recent studies on the use of probiotics and prebiotics in infants. Secondly, in order to prevent or treat intestinal disorders that may affect newborns, the capability of selected Bifidobacterium strains to reduce the amount of Enterobacteriaceae and against the infant pathogen Streptococcus agalactiae was evaluated in vitro. Furthermore, the ability of several commercial fibers to stimulate selectively the growth of bifidobacterial strains was checked. Finally, the gut microbial composition in the early stage of life in response to the intrapartum antibiotic prophylaxis (IAP) against group B Streptococcus was studied using q-PCR, DGGE and next generation sequencing. The results globally showed that Bifidobacterium breve B632 strain is the best candidate for the use in a synbiotic product coupled to a mixture of two selected prebiotic fibers (galactooligosaccharides and fructooligosaccharides) for gastrointestinal disorders in infants. Moreover, the early gut microbial composition was affected by IAP treatment with infants showing lower counts of Bifidobacterium spp. and Bacteroides spp. coupled to a decrement of biodiversity of bacteria, compared to control infants. These studies have shown that IAP could affect the early intestinal balance in infants and they have paved the way to the definition of new strategies alternative to antibiotic treatment to control GBS infection in pregnant women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intestinal microbiota regulates key host functions. It is unknown whether modulation of the microbiota can affect a genetically determined host phenotype. Polymorphisms in the Nucleotide oligomerization domain (Nod)-like receptor family confer genetic risk for inflammatory bowel disease (IBD). We investigated whether the intestinal microbiota and the probiotic strain Bifidobacterium breve NCC2950 affect intestinal barrier function and responses to intestinal injury in Nod1(-/-); Nod2(-/-) mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies support the use of probiotics for the treatment of minor gastrointestinal problems in infants. Positive effects on newborn colics have been evidenced after administration of Lactobacillus strains, whereas no studies have been reported regarding the use of bifidobacteria for this purpose. This work was therefore aimed at the characterization of Bifidobacterium strains capable of inhibiting the growth of pathogens typical of the infant gastro-intestinal tract and of coliforms isolated from colic newborns. Among the 46 Bifidobacterium strains considered, 16 showed high antimicrobial activity against potential pathogens; these strains were further characterized from a taxonomic point of view, for the presence and transferability of antibiotic resistances, for citotoxic effects and adhesion to non tumorigenic gut epithelium cell lines. Moreover, their ability to stimulate gut health by increasing the metabolic activity and the immune response of epithelial cells was also studied. The examination of all these features allowed to identify 3 B. breve strains and a B. longum subsp. longum strain as potential probiotics for the treatments of enteric disorders in newborns such as infantile colics. The formulation of a synbiotic product with an appropriate prebiotic fiber capable of supporting the growth of the selected Bifidobacterium strains was also considered in this study. In this respect the ability of the 4 selected Bifidobacterium strains to use as the sole carbon source and energy source different polisaccharide fibers was investigated The last phase of the work has been dedicated to the evaluation of the gut microbial diversity in newborns whose mothers has been subjected to antibiotic therapy a few hours before the delivery because of a Streptococcus type B infection. These newborns can represent a possible target for the probiotic strains selected in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Este artículo se ocupa de recorrer los orígenes y el desarrollo de la Facultad de Teología de la Universidad Católica Argentina con motivo del centenario de su creación. Teniendo en cuenta los primeros antecedentes universitarios en territorio argentino en el siglo XVII, el autor se centra en analizar los pormenores entorno al Breve fundacional de 1916 y transita los primeros momentos de la su vida académica hasta el tiempo inmediatamente previo al Concilio Vaticano II

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Este artículo se ocupa de recorrer los orígenes y el desarrollo de la Facultad de Teología de la Universidad Católica Argentina con motivo del centenario de su creación. Teniendo en cuenta los primeros antecedentes universitarios en territorio argentino en el siglo XVII, el autor se centra en analizar los pormenores entorno al Breve fundacional de 1916 y transita los primeros momentos de la su vida académica hasta el tiempo inmediatamente previo al Concilio Vaticano II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problematiza, a partir de pesquisa bibliográfica e documental, a utilização do sistema de cotas raciais na realidade brasileira. Conclui que, apesar da importância da adoção de mecanismos que viabilizem a diminuição da desigualdade e a erradicação da discriminação, é necessário aprimorar o debate e valorizar o contexto interno como base de desenvolvimento de alternativas metodológicas para as ações afirmativas.