17 resultados para Biem
Resumo:
In solid mechanics the weak formulation produces an integral equation ready for a discretization and with less restrictive requiremets than the standard field equations. Fundamentally the weak formulation is a expresion of a green formula. An alternative is to choose another green formula materializing a reciprocity relationship between the basis unknowns and an auxiliary family of functions. The degree of smoothness requiered to practice the discretization is then translated to the auxiliar functions. The subsequent discretization (constant, linear etc.)produces a set of equations on the boundary of the domain. For linear 3-D problems the BIEM appears then as a powerful alternative to FEM, because of the reduction to 2-D thanks to the features previously described.
Resumo:
Dynamic soil-structure interaction has been for a long time one of the most fascinating areas for the engineering profession. The building of large alternating machines and their effects on surrounding structures as well as on their own functional behavior, provided the initial impetus; a large amount of experimental research was done,and the results of the Russian and German groups were especially worthwhile. Analytical results by Reissner and Sehkter were reexamined by Quinlan, Sung, et. al., and finally Veletsos presented the first set of reliable results. Since then, the modeling of the homogeneous, elastic halfspace as a equivalent set of springs and dashpots has become an everyday tool in soil engineering practice, especially after the appearance of the fast Fourier transportation algorithm, which makes possible the treatment of the frequency-dependent characteristics of the equivalent elements in a unified fashion with the general method of analysis of the structure. Extensions to the viscoelastic case, as well as to embedded foundations and complicated geometries, have been presented by various authors. In general, they used the finite element method with the well known problems of geometric truncations and the subsequent use of absorbing boundaries. The properties of boundary integral equation methods are, in our opinion, specially well suited to this problem, and several of the previous results have confirmed our opinion. In what follows we present the general features related to steady-state elastodynamics and a series of results showing the splendid results that the BIEM provided. Especially interesting are the outputs obtained through the use of the so-called singular elements, whose description is incorporated at the end of the paper. The reduction in time spent by the computer and the small number of elements needed to simulate realistically the global properties of the halfspace make this procedure one of the most interesting applications of the BIEM.