978 resultados para Bellingshausen Sea, toe of eastern bank of mini trough, outer shelf
Resumo:
A marine geophysical survey was carried out, on the RN Science 1 of the Institute of Oceanography, Chinese Academy of Sciences (IOCAS), in 2000, at the Miyako Section of Okinawa Trough. Here we present seismic and acoustic evidence of a gas seep on the sea floor on the western part of the Okinawa Through, near the lower slope of the East China Sea Slope and discuss the possibility of related formation of gas hydrate. A gas column reflection was observed in echo-sounder data above a section where the sea floor reflector was missing, on both the echo-sounder and the seismic data for line H14. The seismic data also show an acoustic curtain reflection and a turbidity reflection at this section. These anomalies are the evidence of the existence of a gas seep, which occupies an area 2.2 km in diameter. Based on the acoustic curtain on line H14, we believe that the amount of gas contained in the sediments below the gas seep is larger than 1 % by volume of sediment. Tectonically, the gas seep developed in a small basin controlled by basement uplift in the north, south and east. The thickness of the sediment layer can be greater than 3.5 km. A mud diapir structure was found in layer D beneath the gas seep. Over-pressure may occur due to the large sediment thickness and also the tectonic basement uplift in the north, south, and east. The mud diapir could be the preferential pathway for methane-rich fluids. The acoustic curtain may indicate that free gas related to the gas seep can be formed on the sea floor. We also note that the layer above the acoustic curtain on profile H14 may contain gas hydrate.
Resumo:
The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.