986 resultados para Bellingshausen Sea, shallow part of trough in Eltanin Bay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present information on the biomass and catch of demersal species which constitute a large part of the by-catch of the shrimp trawlers on the Sofala Bank (Mozambique), and thus seem to be more vulnerable than the pelagic stocks to an increase in effort is described. In addition, preliminary data on growth and mortality of two demersal species, Johnius belengerii and Otolithes ruber , which are frequently found in the by-catch, is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a 25-hour hydrographic times series at two stations near the head of Monterey Submarine Canyon, an internal tide was observed with an amplitude of 80 to 115 m in water depths of 120 and 220 m respectively. These large oscillations produced daily variations in hydrographic and chemical parameters that were of the same magnitude as seasonal variations in Monterey Bay. Computed velocities associated with the internal tide were on the order of 10 em/sec, and this tidally induced circulation may have a significant role in the exchange of deep water between Monterey Submarine Canyon and the open ocean. (PDF contains 49 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations and flux densities of methane were determined during a lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L-1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100 to 350m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 µmol m-2d-1 to a maximum of 22.6 µmol m-2d-1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.Foraging behaviours of the Australian sea lion (Neophoca cinerea) reflect an animal working hard to exploit benthic habitats. Lactating females demonstrate almost continuous diving, maximize bottom time, exhibit elevated field metabolism and frequently exceed their calculated aerobic dive limit. Given that larger animals have disproportionately greater diving capabilities, we wanted to examine how pups and juveniles forage successfully.
2.Time/depth recorders were deployed on pups, juveniles and adult females at Seal Bay Conservation Park, Kangaroo Island, South Australia. Ten different mother/pup pairs were equipped at three stages of development (6, 15 and 23 months) to record the diving behaviours of 51 (nine instruments failed) animals.
3. Dive depth and duration increased with age. However, development was slow. At 6 months, pups demonstrated minimal diving activity and the mean depth for 23-month-old juveniles was only 44 ± 4 m, or 62% of adult mean depth.
4. Although pups and juveniles did not reach adult depths or durations, dive records for young sea lions indicate benthic diving with mean bottom times (2·0 ± 0·2 min) similar to those of females (2·1 ± 0·2 min). This was accomplished by spending higher proportions of each dive and total time at sea on or near the bottom than adults. Immature sea lions also spent a higher percentage of time at sea diving.
5. Juveniles may have to work harder because they are weaned before reaching full diving capability. For benthic foragers, reduced diving ability limits available foraging habitat. Furthermore, as juveniles appear to operate close to their physiological maximum, they would have a difficult time increasing foraging effort in response to reductions in prey. Although benthic prey are less influenced by seasonal fluctuations and oceanographic perturbations than epipelagic prey, demersal fishery trawls may impact juvenile survival by disrupting habitat and removing larger size classes of prey. These issues may be an important factor as to why the Australian sea lion population is currently at risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.