899 resultados para Beat-mixing
Resumo:
This paper quantifies the mixing and dispersion from an outboard motor by field experiments in a small subtropical waterway. Organic dye was used as a surrogate for exhaust emissions and was mixed with uncontaminated creek water before being dispersed into the creek. Dye concentrations were measured with an array of concentration probes stationed in the creek. The data were then processed and fitted with a power law function. The corresponding dispersion constants agreed well with the literature. However, the amplitude was lower than the IMO equation but higher than the correlation from laboratory tests. Results for dye concentration intermittency (presence of dye) are presented for the first time from such field measurements and show significant mixing in-homogeneity.
Resumo:
The use of mobile devices and social media technologies are becoming all-pervasive in society: they are both transformative and constant. The high levels of mobile device ownership and increased access to social media technologies enables the potential for ‘anytime, anywhere’ cooperation and collaboration in education. While recent reports into emerging technologies in higher education predict an increase in the use of mobile devices and social media technologies (Horizon Report, 2013), there is a lack of theory-based research to indicate how these technologies can be most effectively harnessed to support and enhance student learning and what the impacts of these technologies are on both students and educators. In response to the need to understand how these technologies can be better embraced within higher education, this study investigated how first year education students used mobile devices and social media technologies. More specifically, the study identified how students spent most of their time when connected online with mobile devices and social media technologies and whether the online connected time engaged them in their learning or whether it was a distraction.
Resumo:
We propose a framework for adaptive security from hard random lattices in the standard model. Our approach borrows from the recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable and punctured trapdoors, respectively used in reality and in simulation. We extend this idea to make the simulation trapdoors cancel not for a specific forgery but on a non-negligible subset of the possible challenges. Conceptually, we build a compactly representable, large family of input-dependent “mixture” lattices, set up with trapdoors that “vanish” for a secret subset which we hope the forger will target. Technically, we tweak the lattice structure to achieve “naturally nice” distributions for arbitrary choices of subset size. The framework is very general. Here we obtain fully secure signatures, and also IBE, that are compact, simple, and elegant.
Resumo:
In an estuary, mixing and dispersion result from a combination of large-scale advection and smallscale turbulence, which are complex to estimate. The predictions of scalar transport and mixing are often inferred and rarely accurate, due to inadequate understanding of the contributions of these difference scales to estuarine recirculation. A multi-device field study was conducted in a small sub-tropical estuary under neap tide conditions with near-zero fresh water discharge for about 48 hours. During the study, acoustic Doppler velocimeters (ADV) were sampled at high frequency (50 Hz), while an acoustic Doppler current profiler (ADCP) and global positioning system (GPS) tracked drifters were used to obtain some lower frequency spatial distribution of the flow parameters within the estuary. The velocity measurements were complemented with some continuous measurement of water depth, conductivity, temperature and some other physiochemical parameters. Thorough quality control was carried out by implementation of relevant error removal filters on the individual data set to intercept spurious data. A triple decomposition (TD) technique was introduced to access the contributions of tides, resonance and ‘true’ turbulence in the flow field. The time series of mean flow measurements for both the ADCP and drifter were consistent with those of the mean ADV data when sampled within a similar spatial domain. The tidal scale fluctuation of velocity and water level were used to examine the response of the estuary to tidal inertial current. The channel exhibited a mixed type wave with a typical phase-lag between 0.035π– 0.116π. A striking feature of the ADV velocity data was the slow fluctuations, which exhibited large amplitudes of up to 50% of the tidal amplitude, particularly in slack waters. Such slow fluctuations were simultaneously observed in a number of physiochemical properties of the channel. The ensuing turbulence field showed some degree of anisotropy. For all ADV units, the horizontal turbulence ratio ranged between 0.4 and 0.9, and decreased towards the bed, while the vertical turbulence ratio was on average unity at z = 0.32 m and approximately 0.5 for the upper ADV (z = 0.55 m). The result of the statistical analysis suggested that the ebb phase turbulence field was dominated by eddies that evolved from ejection type process, while that of the flood phase contained mixed eddies with significant amount related to sweep type process. Over 65% of the skewness values fell within the range expected of a finite Gaussian distribution and the bulk of the excess kurtosis values (over 70%) fell within the range of -0.5 and +2. The TD technique described herein allowed the characterisation of a broader temporal scale of fluctuations of the high frequency data sampled within the durations of a few tidal cycles. The study provides characterisation of the ranges of fluctuation required for an accurate modelling of shallow water dispersion and mixing in a sub-tropical estuary.
Resumo:
High-resolution data from the TRMM satellite shows that sea surface temperature (SST) cools by 3 degrees C under the tracks of pre-monsoon tropical cyclones in the north Indian Ocean. However, even the strongest post-monsoon cyclones do not cool the open north Bay of Bengal. In this region, a shallow layer of freshwater from river runoff and monsoon rain caps a deep warm layer. Therefore, storm-induced mixing is not deep, and it entrains warm subsurface water. It is possible that the hydrography of the post-monsoon north Bay favours intense cyclones.
Resumo:
Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems. With the help of experimental and numerical analysis, simulation equation governing those times scale has been presented in the present work.
Resumo:
New methods for controlling blowfly strike will be needed when mulesing is phased out and the availability or efficacy of insecticides for control of fly strike decreases. The Australian Sheep Industry CRC has pursued two approaches for the development of new methods to help control blowfly strike. In the first, genetic resistance of sheep to survival and growth of blowfly larvae was examined. Resistance to growth of larvae was heritable (0.29 ± 0.22). The trait was not associated with resistance to internal parasites, nor was it influenced by wool characteristics such as fibre diameter or coefficient of variation of fibre diameter. This new trait differs from resistance to fly strike associated with resistance to fleece rot. Because measurement of the trait is labour intensive, gene markers or correlated measures are needed before it will be suitable for industry adoption. The second approach examined the impact of larval products on the immmune system of the sheep. Larvae suppress the sheep immune system and thereby limit the ability of the sheep to reject the larvae. The immunosuppresive agent is being purified and strategies to abolish its activity are being explored. Abolition of immunosuppression would create opportunities for the development of new vaccines againts blowfly strike.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
A study of the effect of N2 reservoir temperature on the small-signal gain in a downstream-mixing 16 μm CO2-N2 GDL is presented. It is shown that the small-signal gain decreases with the increase of N2 reservoir temperature. The conditions for reversing this trend are discussed and the results are presented in the form of graphs.
Resumo:
Configuration interaction calculation have been carried out on the s-hole states of Mn2+ Fe2+ (both high- and low-spin configurations). Co2+, Ca2+, K+ and Na+ including configurations involving virtual orbitals. The results show good agreement with the multiplet structures found in X-ray photoelectron spectra of these ions.
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Experiments were conducted in the nonequilibrium region of a free mixing layer with unequal freestream velocities. Four velocity ratios U(1)/U(2) of 0.32, 0.46, 0.74, and 0.96 were used in this investigation. The growth of the shear layer as well as the velocity adjustment in the near wake were examined. There was reasonable agreement between the measured mean velocity profiles and those computed using the K-epsilon turbulence model. Some periodic turbulence velocity fluctuations were observed in the mixing layer, but their frequency remained the same along the flow.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
On beef cattle feed pen surfaces, fresh and decayed manure is mixed with base rock or soil (base). Quantifying this mixing has beneficial applications for aspects including nutrient and greenhouse gas budgeting. However, no practical methods exist to quantify mixing. We investigated if measuring element concentrations in: (A) fresh manure, (B) base material, and (C) pen manure offers a promising method to quantify manure/base mixing on pen surfaces. Using three operational beef feedlots as study sites, we targeted carbon (C), and silicon (Si), which are the two most abundant and easily measurable organic and inorganic elements. Our results revealed that C concentrations were strongly (>15 times) and significantly (P < 0.05) higher whereas Si concentrations strongly (>10 times) and significantly (P < 0.01) lower in fresh manure than base material at all three sites. These relative concentrations were not significantly impacted by manure decay, as determined by an 18-week incubation experiment. This suggested that both of these elements are suitable markers for quantifying base/manure mixing on pens. However, due to the chemical change of manure during decay, C was shown to be an imprecise marker of base/manure mixing. By contrast, using Si to estimate base/manure mixing was largely unaffected by manure decay. These findings were confirmed by measuring C and Si concentrations in stockpiled pen surface manure from one of the sites. Using Si concentrations is a promising approach to quantify base/manure mixing on feed pens given that this element is abundantly concentrated in soils and rocks.