998 resultados para Bcl I


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus 5 (BoHV-5) is an α-herpesvirus that causes neurological disease in young cattle and is also occasionally involved in reproductive disorders. Although there have been many studies of the apoptotic pathways induced by viruses belonging to the family Herpesviridae, there is little information about the intrinsic programmed cell death pathway in host-BoHV-5 interactions. We found that BoHV-5 is able to replicate in both mesenchymal and epithelial cell lines, provoking cytopathology that is characterized by cellular swelling and cell fusion. Viral antigens were detected in infected cells by immunofluorescence assay at 48 to 96 h post-infection (p.i.). At 48 to 72 h p.i., anti-apoptotic BCL-2 antigens were found at higher levels than Bax antigens; the latter is considered a pro-apoptotic protein. Infected cells had increased BCL-2 phenotype cells from 48 to 96 h p.i., based on flow cytometric analysis. At 48 to 96 h p.i., Bax mRNA was not expressed in any of the infected cell monolayers. In contrast, BCL-2 mRNA was found at high levels at all p.i. in both types of cells. BoHV-5 replication apparently modulates BCL-2 expression and gene transcription, enhancing production of virus progeny. © FUNPEC-RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type II cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Conclusion: Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has previously been published that interferon-α (type I IFN) improves clinical symptoms of asthma patients. Since human basophils are major inflammatory cells in maintaining chronic allergic asthma we investigate whether type I IFN affect human blood basophils. Furthermore, previous studies have shown that spontaneous apoptosis of human basophils is slow due to constitutive expression of anti-apoptotic BCL-2 family members. In addition, IL-3 exceptionally promotes survival of basophils by enhancing constitutive expression of BCL-2 family members and by inducing de-novo expression of Pim-1 kinase. Thus, we also assessed whether type I IFN might overcome IL-3-induced survival of human basophils. Our data show that type I IFN enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or type II IFN treated cells. Furthermore, we demonstrate that both type I IFN and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. Analyses of signaling pathways reveal that type I IFN promote prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of type I IFN is abolished. On the other hand, type I IFN do not reduce IL-3-induced de novo expression of Pim-1 and BCL-2. This is in line with our observation that IL-3-induced survival is dominant over type I IFN-enhanced apoptosis. In addition, phosphorylation of p38 MAPK in type I IFN treated cells is comparable to non-treated cells. Particularly however, inhibition of this p-p38 activity abrogates apoptosis as well. We conclude that type I IFN-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38 MAPK pathways. Our study identifies a so far unknown effect of type I IFN and may explain the improved clinical symptoms of asthma patients treated with type I IFN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and prodopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-XL induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-XL anticipates and enhances DAn generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell–substratum adhesion is an essential requirement for survival of human neonatal keratinocytes in vitro. Similarly, activation of the epidermal growth factor receptor (EGF-R) has recently been implicated not only in cell cycle progression but also in survival of normal keratinocytes. The mechanisms by which either cell–substratum adhesion or EGF-R activation protect keratinocytes from programmed cell death are poorly understood. Here we describe that blockade of the EGF-R and inhibition of substratum adhesion share a common downstream event, the down-regulation of the cell death protector Bcl-xL. Expression of Bcl-xL protein was down-regulated during forced suspension culture of keratinocytes, concurrent with large-scale apoptosis. Similarly, EGF-R blockade was accompanied by down-regulation of Bcl-xL steady-state mRNA and protein levels to an extent comparable to that observed in forced suspension culture. However, down-regulation of Bcl-xL expression by EGF-R blockade was not accompanied by apoptosis; in this case, a second signal, generated by passaging, was required to induce rapid and large-scale apoptosis. These findings are consistent with the conclusions that (i) Bcl-xL represents a shared molecular target for signaling through cell-substrate adhesion receptors and the EGF-R, and (ii) reduced levels of Bcl-xL expression through EGF-R blockade lower the tolerance of keratinocytes for cell death signals generated by cellular stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the human protooncogene bcl-2 protects neural cells from death induced by many forms of stress, including conditions that greatly elevate intracellular Ca2+. Considering that Bcl-2 is partially localized to mitochondrial membranes and that excessive mitochondrial Ca2+ uptake can impair electron transport and oxidative phosphorylation, the present study tested the hypothesis that mitochondria from Bcl-2-expressing cells have a higher capacity for energy-dependent Ca2+ uptake and a greater resistance to Ca(2+)-induced respiratory injury than mitochondria from cells that do not express this protein. The overexpression of bcl-2 enhanced the mitochondrial Ca2+ uptake capacity using either digitonin-permeabilized GT1-7 neural cells or isolated GT1-7 mitochondria by 1.7 and 3.9 fold, respectively, when glutamate and malate were used as respiratory substrates. This difference was less apparent when respiration was driven by the oxidation of succinate in the presence of the respiratory complex I inhibitor rotenone. Mitochondria from Bcl-2 expressors were also much more resistant to inhibition of NADH-dependent respiration caused by sequestration of large Ca2+ loads. The enhanced ability of mitochondria within Bcl-2-expressing cells to sequester large quantities of Ca2+ without undergoing profound respiratory impairment provides a plausible mechanism by which Bcl-2 inhibits certain forms of delayed cell death, including neuronal death associated with ischemia and excitotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis of photoreceptors occurs infrequently in adult retina but can be triggered in inherited and environmentally induced retinal degenerations. The protooncogene bcl-2 is known to be a potent regulator of cell survival in neurons. We created lines of transgenic mice overexpressing bcl-2 to test for its ability to increase photoreceptor survival. Bcl-2 increased photoreceptor survival in mice with retinal degeneration caused by a defective opsin or cGMP phosphodiesterase. Overexpression of Bcl-2 in normal photoreceptors also decreased the damaging effects of constant light exposure. Apoptosis was induced in normal photoreceptors by very high levels of bcl-2. We conclude that bcl-2 is an important regulator of photoreceptor cell death in retinal degenerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cancers overexpress a member of the bcl-2 family of inhibitors of apoptosis. To determine the role of these proteins in maintaining cancer cell viability, an adenovirus vector that expresses bcl-xs, a functional inhibitor of these proteins, was constructed. Even in the absence of an exogenous apoptotic signal such as x-irradiation, this virus specifically and efficiently kills carcinoma cells arising from multiple organs including breast, colon, stomach, and neuroblasts. In contrast, normal hematopoietic progenitor cells and primitive cells capable of repopulating severe combined immunodeficient mice were refractory to killing by the bcl-xs adenovirus. These results suggest that Bcl-2 family members are required for survival of cancer cells derived from solid tissues. The bcl-xs adenovirus vector may prove useful in killing cancer cells contaminating the bone marrow of patients undergoing autologous bone marrow transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have implicated the bcl-2 protooncogene as a potential regulator of neuronal survival. However, mice lacking functional bcl-2 exhibited normal development and maintenance of the central nervous system (CNS). Since bcl-2 appears dispensable for neuronal survival, we have examined the expression and function of bcl-x, another member of the bcl-2 family of death regulatory genes. Bcl-2 is expressed in neuronal tissues during embryonic development but is down-regulated in the adult CNS. In contrast, Bcl-xL expression is retained in neurons of the adult CNS. Two different forms of bcl-x mRNA and their corresponding products, Bcl-xL and Bcl-x beta, were expressed in embryonic and adult neurons of the CNS. Microinjection of bcl-xL and bcl-x beta cDNAs into primary sympathetic neurons inhibited their death induced by nerve growth factor withdrawal. Thus, Bcl-x proteins appear to play an important role in the regulation of neuronal survival in the adult CNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Date of Acceptance: 12/07/2015 © 2015 John Wiley & Sons Ltd. Acknowledgements This study was supported by funding from the Encompass kick start and SMART:Scotland award schemes of Scottish Enterprise and Friends of Anchor. The Grampian Biorepository assisted with the immunohistochemical investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Date of Acceptance: 12/07/2015 © 2015 John Wiley & Sons Ltd. Acknowledgements This study was supported by funding from the Encompass kick start and SMART:Scotland award schemes of Scottish Enterprise and Friends of Anchor. The Grampian Biorepository assisted with the immunohistochemical investigations.