926 resultados para Bayesian Mixture Model, Cavalieri Method, Trapezoidal Rule
Resumo:
When the data consist of certain attributes measured on the same set of items in different situations, they would be described as a three-mode three-way array. A mixture likelihood approach can be implemented to cluster the items (i.e., one of the modes) on the basis of both of the other modes simultaneously (i.e,, the attributes measured in different situations). In this paper, it is shown that this approach can be extended to handle three-mode three-way arrays where some of the data values are missing at random in the sense of Little and Rubin (1987). The methodology is illustrated by clustering the genotypes in a three-way soybean data set where various attributes were measured on genotypes grown in several environments.
Resumo:
Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.
Resumo:
This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.
Resumo:
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
The capability-affordance model: a method for analysis and modelling of capabilities and affordances
Resumo:
Existing capability models lack qualitative and quantitative means to compare business capabilities. This paper extends previous work and uses affordance theories to consistently model and analyse capabilities. We use the concept of objective and subjective affordances to model capability as a tuple of a set of resource affordance system mechanisms and action paths, dependent on one or more critical affordance factors. We identify an affordance chain of subjective affordances by which affordances work together to enable an action and an affordance path that links action affordances to create a capability system. We define the mechanism and path underlying capability. We show how affordance modelling notation, AMN, can represent affordances comprising a capability. We propose a method to quantitatively and qualitatively compare capabilities using efficiency, effectiveness and quality metrics. The method is demonstrated by a medical example comparing the capability of syringe and needless anaesthetic systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.