946 resultados para Bayesian Latent Class


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we address issues relating to vulnerability to economic exclusion and levels of economic exclusion in Europe. We do so by applying latent class models to data from the European Community Household Panel for thirteen countries. This approach allows us to distinguish between vulnerability to economic exclusion and exposure to multiple deprivation at a particular point in time. The results of our analysis confirm that in every country it is possible to distinguish between a vulnerable and a non-vulnerable class. Association between income poverty, life-style deprivation and subjective economic strain is accounted for by allocating individuals to the categories of this latent variable. The size of the vulnerable class varies across countries in line with expectations derived from welfare regime theory. Between class differentiation is weakest in social democratic regimes but otherwise the pattern of differentiation is remarkably similar. The key discriminatory factor is life-style deprivation, followed by income and economic strain. Social class and employment status are powerful predictors of latent class membership in all countries but the strength of these relationships varies across welfare regimes. Individual biography and life events are also related to vulnerability to economic exclusion. However, there is no evidence that they account for any significant part of the socio-economic structuring of vulnerability and no support is found for the hypothesis that social exclusion has come to transcend class boundaries and become a matter of individual biography. However, the extent of socio-economic structuring does vary substantially across welfare regimes. Levels of economic exclusion, in the sense of current exposure to multiple deprivation, also vary systematically by welfare regime and social class. Taking both vulnerability to economic exclusion and levels of exclusion into account suggests that care should be exercised in moving from evidence on the dynamic nature of poverty and economic exclusion to arguments relating to the superiority of selective over universal social policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – Under investigation is Prosecco wine, a sparkling white wine from North-East Italy.
Information collection on consumer perceptions is particularly relevant when developing market
strategies for wine, especially so when local production and certification of origin play an important
role in the wine market of a given district, as in the case at hand. Investigating and characterizing the
structure of preference heterogeneity become crucial steps in every successful marketing strategy. The
purpose of this paper is to investigate the sources of systematic differences in consumer preferences.
Design/methodology/approach – The paper explores the effect of inclusion of answers to
attitudinal questions in a latent class regression model of stated willingness to pay (WTP) for this
specialty wine. These additional variables were included in the membership equations to investigate
whether they could be of help in the identification of latent classes. The individual specific WTPs from
the sampled respondents were then derived from the best fitting model and examined for consistency.
Findings – The use of answers to attitudinal question in the latent class regression model is found to
improve model fit, thereby helping in the identification of latent classes. The best performing model
obtained makes use of both attitudinal scores and socio-economic covariates identifying five latent
classes. A reasonable pattern of differences in WTP for Prosecco between CDO and TGI types were
derived from this model.
Originality/value – The approach appears informative and promising: attitudes emerge as
important ancillary indicators of taste differences for specialty wines. This might be of interest per se
and of practical use in market segmentation. If future research shows that these variables can be of use
in other contexts, it is quite possible that more attitudinal questions will be routinely incorporated in
structural latent class hedonic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health Locus of Control (HLC) classifies our beliefs about the connection between our actions and health outcomes (Skinner, 1996) into three categories: “internal control”, corresponding to health being the result of an individual's effort and habits; “control by powerful others”, whereby health depends on others, such as doctors; and “chance control”, according to which health depends on fate and chance. Using Choice Experiments we investigate the relationship between HLC and willingness to change lifestyle, in terms of eating habits, physical activity and associated cardiovascular disease risk, in a 384 person sample representative of the 40–65 aged population of Northern Ireland administered between February and July 2011. Using latent class analysis we identify three discrete classes of people based on their HLC: the first class is sceptical about their capacity to control their health and certain unhealthy habits. Despite being unsatisfied with their situation, they are reluctant to accept behaviour changes. The second is a group of individuals unhappy with their current situation but willing to change through exercise and diet. Finally, a group of healthy optimists is identified, who are satisfied with their current situation but happy to take more physical activity and improve their diet. Our findings show that any policy designed to modify people's health related behaviour should consider the needs of this sceptical class which represents a considerable proportion of the population in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poker is the gambling game that is currently gaining the most in popularity. However, there is little information on poker players' characteristics and risk factors. Furthermore, the first studies described poker players, often recruited in universities, as an homogeneous group who played in only one of the modes (land based or on the Internet). This study aims to identify, through latent class analyses, poker player subgroups. A convenience sample of 258 adult poker players was recruited across Quebec during special events or through advertising in various media. Participants filled out a series of questionnaires (Canadian Problem Gambling Index, Beck Depression, Beck Anxiety, erroneous belief and alcohol/drug consumption). The latent class analysis suggests that there are three classes of poker players. Class I (recreational poker players) includes those who have the lowest probability of engaging intensively in different game modes. Participants in class II (Internet poker players) all play poker on the Internet. This class includes the highest proportion of players who consider themselves experts or professionals. They make a living in part or in whole from poker. Class III (multiform players) includes participants with the broadest variety of poker patterns. This group is complex: these players are positioned halfway between professional and recreational players. Results indicate that poker players are not an homogeneous group identified simply on the basis of the form of poker played. The specific characteristics associated with each subgroup points to vulnerabilities that could potentially be targeted for preventive interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there is a general consensus among researchers that engagement in nonsuicidal self-injury (NSSI) is associated with increased risk for suicidal behavior, little attention has been given to whether suicidal risk varies among individuals engaging in NSSI. To identify individuals with a history of NSSI who are most at risk for suicidal behavior, we examined individual variability in both NSSI and suicidal behavior among a sample of young adults with a history of NSSI (N = 439, Mage = 19.1). Participants completed self-report measures assessing NSSI, suicidal behavior, and psychosocial adjustment (e.g., depressive symptoms, daily hassles). We conducted a latent class analysis using several characteristics of NSSI and suicidal behaviors as class indicators. Three subgroups of individuals were identified: 1) an infrequent NSSI/not high risk for suicidal behavior group, 2) a frequent NSSI/not high risk for suicidal behavior group, and 3) a frequent NSSI/high risk for suicidal behavior group. Follow-up analyses indicated that individuals in the ‘frequent NSSI/high risk for suicidal behavior’ group met the clinical-cut off score for high suicidal risk and reported significantly greater levels of suicidal ideation, attempts, and risk for future suicidal behavior as compared to the other two classes. Thus, this study is the first to identity variability in suicidal risk among individuals engaging in frequent and multiple methods of NSSI. Class 3 was also differentiated by higher levels of psychosocial impairment relative to the other two classes, as well as a comparison group of non-injuring young adults. Results underscore the importance of assessing individual differences in NSSI characteristics, as well as psychosocial impairment, when assessing risk for suicidal behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in-depth understanding of the different groups that make up the HIV-infected population should inform prevention and care. Using latent class analysis (LCA) we identified seven groups with similar socio-demographic and behavioral characteristics at enrolment in the Swiss HIV Cohort Study: older gay men, younger gay men, older heterosexual men, injection drug users, single migrants, migrant women in partnerships and heterosexual men and women. Outcomes of combination antiretroviral therapy (ART) were analyzed in 1,633 patients starting ART. Compared to older gay men, the probability of a virologic response to ART was reduced in single migrants, in older heterosexual men and in IDUs. Loss to follow-up was higher in single migrants and IDUs, and mortality was increased in older heterosexual men and IDUs. Socio-behavioral groups identified by LCA allow insights above what can be gleaned from traditional transmission groups, and may identify patients who could benefit from targeted interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airway disease in childhood comprises a heterogeneous group of disorders. Attempts to distinguish different phenotypes have generally considered few disease dimensions. The present study examines phenotypes of childhood wheeze and chronic cough, by fitting a statistical model to data representing multiple disease dimensions. From a population-based, longitudinal cohort study of 1,650 preschool children, 319 with parent-reported wheeze or chronic cough were included. Phenotypes were identified by latent class analysis using data on symptoms, skin-prick tests, lung function and airway responsiveness from two preschool surveys. These phenotypes were then compared with respect to outcome at school age. The model distinguished three phenotypes of wheeze and two phenotypes of chronic cough. Subsequent wheeze, chronic cough and inhaler use at school age differed clearly between the five phenotypes. The wheeze phenotypes shared features with previously described entities and partly reconciled discrepancies between existing sets of phenotype labels. This novel, multidimensional approach has the potential to identify clinically relevant phenotypes, not only in paediatric disorders but also in adult obstructive airway diseases, where phenotype definition is an equally important issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questionnaire data may contain missing values because certain questions do not apply to all respondents. For instance, questions addressing particular attributes of a symptom, such as frequency, triggers or seasonality, are only applicable to those who have experienced the symptom, while for those who have not, responses to these items will be missing. This missing information does not fall into the category 'missing by design', rather the features of interest do not exist and cannot be measured regardless of survey design. Analysis of responses to such conditional items is therefore typically restricted to the subpopulation in which they apply. This article is concerned with joint multivariate modelling of responses to both unconditional and conditional items without restricting the analysis to this subpopulation. Such an approach is of interest when the distributions of both types of responses are thought to be determined by common parameters affecting the whole population. By integrating the conditional item structure into the model, inference can be based both on unconditional data from the entire population and on conditional data from subjects for whom they exist. This approach opens new possibilities for multivariate analysis of such data. We apply this approach to latent class modelling and provide an example using data on respiratory symptoms (wheeze and cough) in children. Conditional data structures such as that considered here are common in medical research settings and, although our focus is on latent class models, the approach can be applied to other multivariate models.