983 resultados para Basic reproduction number
Resumo:
OBJECTIVE: To estimate the basic reproduction number (R0) of dengue fever including both imported and autochthonous cases. METHODS: The study was conducted based on epidemiological data of the 2003 dengue epidemic in Brasília, Brazil. The basic reproduction number is estimated from the epidemic curve, fitting linearly the increase of initial cases. Aiming at simulating an epidemic with both autochthonous and imported cases, a "susceptible-infectious-resistant" compartmental model was designed, in which the imported cases were considered as an external forcing. The ratio between R0 of imported versus autochthonous cases was used as an estimator of real R0. RESULTS: The comparison of both reproduction numbers (only autochthonous versus all cases) showed that considering all cases as autochthonous yielded a R0 above one, although the real R0 was below one. The same results were seen when the method was applied on simulated epidemics with fixed R0. This method was also compared to some previous proposed methods by other authors and showed that the latter underestimated R0 values. CONCLUSIONS: It was shown that the inclusion of both imported and autochthonous cases is crucial for the modeling of the epidemic dynamics, and thus provides critical information for decision makers in charge of prevention and control of this disease.
Resumo:
We analyzed dengue incidence in the period between October 2006-July 2007 of 146 cities around the country were Larval Index Rapid Assay (LIRA) surveillance was carried out in October 2006. Of these, we chosen 61 cities that had 500 or more cases reported during this period. We calculated the incidence coefficient, the force of infection (») and the basic reproduction number (R0) of dengue in those 61 cities and correlated those variables with the LIRA. We concluded that » and R0 are more associated with the number of cases than LIRA. In addition, the average R0 for the 2006/2007 dengue season was almost as high as that calculated for the 2001/2002 season, the worst in Brazilian history.
Resumo:
This thesis was focussed on statistical analysis methods and proposes the use of Bayesian inference to extract information contained in experimental data by estimating Ebola model parameters. The model is a system of differential equations expressing the behavior and dynamics of Ebola. Two sets of data (onset and death data) were both used to estimate parameters, which has not been done by previous researchers in (Chowell, 2004). To be able to use both data, a new version of the model has been built. Model parameters have been estimated and then used to calculate the basic reproduction number and to study the disease-free equilibrium. Estimates of the parameters were useful to determine how well the model fits the data and how good estimates were, in terms of the information they provided about the possible relationship between variables. The solution showed that Ebola model fits the observed onset data at 98.95% and the observed death data at 93.6%. Since Bayesian inference can not be performed analytically, the Markov chain Monte Carlo approach has been used to generate samples from the posterior distribution over parameters. Samples have been used to check the accuracy of the model and other characteristics of the target posteriors.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Resumo:
A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.
Resumo:
Background: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. Methodology/Principal Findings: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number (R0) estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). Conclusions/Significance: To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration. © 2013 Laporta et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model’s variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes’ breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito’s control.
Resumo:
Strongylosis in equids, despite being very common, have never been studied from a strictly ecological point of view. Mathematical models are important ecological tools used to study the temporal dynamics of parasite populations, and are useful to study the effect of different biological parameters, as well as to analyse the outcome produced by perturbations such as anthelmintic treatments. This work describes the study of the temporal dynamics of strongyles infection in an organic donkey population, performed using coprological quantitative analysis and donkeys’ age as a proxy of the time of infection. Force of infection was then estimated for Strongylus vulgaris and small strongyles and the results used as the basis for the development of mathematical models. In particular, the comparison of models output and field data made it possible to estimate the transmission coefficient and to consequently calculate the basic reproduction number R0 and the threshold host density. Small strongyles model includes hypobiosis and, more interestingly as never found in literature, a density-dependent development rate of hypobiotic larvae in adult parasites in order to simulate a negative feedback between larvae emergence from hypobiosis and adult parasite abundance. Simulations of pharmacological and environmental treatments showed that parasite eradication was possible for S. vulgaris only, while small strongyles, due to hypobiosis and density-dependent development rate of their hypobiotic larvae, are very difficult to control and impossible to eradicate. In addition, density-dependence in larval development has been demonstrated to act as a key factor in improving parasite population survival and abundance even in absence of human intervention.
Resumo:
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Resumo:
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sexually transmitted infections (STIs) are, by definition, transmitted between sexual partners. For curable STIs an infected index case can potentially re-infect the same partner multiple times. Thus, R0, the average number of secondary infections one typical infected individual will produce during his or her infectious period is not necessarily the same as the average number of secondary cases (infected persons). Here we introduce the new concept of the case reproduction number (Rc). In addition, we define the partnership reproduction number (Rp) as the average number of secondary partnerships consisting of two infected individuals one typical infected individual will produce over his or her infectious lifetime. Rp takes into account clearance and re-infection within partnerships, which results in a prolongation of the duration of the infectious period. The two new reproduction numbers were derived for a deterministic pair model with serial monogamous partnerships using infection parameters for Chlamydia trachomatis, an example of a curable STI. We showed that re-infection within partnerships means that curable STIs can be sustained endemically even when the average number of secondary cases a person produces during his or her infectious period is below one.