986 resultados para Ball mill


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peruvian carrot and cassava starches were ground in a ball mill for 4, 8, 16, and 32 h and their structural and physicochemical characteristics were determined. Results obtained from HPAEC-PAD, GPC, and amylose content indicated a breaking of hydrogen bounds and α-(1 [RIGHTWARDS ARROW] 6) linkages of the starch molecules after treatment. X-ray diffractograms showed that the milling provided a reduction in the crystalline area of the starch granules. Most of the starch granules displayed agglomeration after 4 h of milling, when observed under a scanning electron microscope, and after 16 h a shapeless mass was observed for Peruvian carrot starch. Solubility and water absorption capacity of the starches increased with an increase in the milling time, while RVA profiles showed a progressive reduction of peak, breakdown, and final viscosities, as well as the development of initial viscosity. Gelatinization temperatures and enthalpies were reduced. Prolonged ball milling accelerated the enthalpy relaxation in both starches. These results confirmed a partial gelatinization of the starches, which was 82.6% for Peruvian carrot and 65.4% for cassava starches after 32 h of milling. The Peruvian carrot starch was more affected by the ball milling because of both its lower amylose content and the defects in its crystalline structure

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, a new ternary phase was discovered in the Ti-Si-B system, located near the Ti6Si2B composition. The present study concerns the preparation of titanium alloys that contain such phase mixed with α-titanium and other intermetallic phases. High-purity powders were initially processed in a planetary ball-mill under argon atmosphere with Ti-18Si-6B and Ti-7.5Si-22.5B at. (%) initial compositions. Variation of parameters such as rotary speed, time, and ball diameters were adopted. The as-milled powders were pressureless sintered and hot pressed. Both the as-milled and sintered materials were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Sintered samples have presented equilibrium structures formed mainly by the α-Ti+Ti6Si2B+Ti5Si3+TiB phases. Silicon and boron peaks disappear throughout the milling processes, as observed in the powder diffraction data. Furthermore, an iron contamination of up to 10 at. (%) is measured by X-ray spectroscopy analysis on some regions of the sintered samples. Density, hardness and tribological results for these two compositions are also presented here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gadolinium iron garnet was milled in a high energy ball mill to study its magnetic properties in the nanocrystalline regime. XRD reveals the decomposition of the garnet phase into Gd-orthoferrite and Gd2O3 on milling. The variation of saturation magnetization and coercivity with milling is attributed to a possible shift in the compensation temperature on grain size reduction and an increase in the orthoferrite content. The Mössbauer spectrum at 16 K is characteristic of the magnetically ordered state corresponding to GdIG, GdFeO3 and α-Fe2O3 whereas at room temperature it is a superparamagnetic doublet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effect of MnO addition on microstructure and ionic transport properties of nanocrystalline cubic(c)-ZrO2 is reported. Monoclinic (m) ZrO2 powders with 10-30 mol% MnO powder are mechanically alloyed in a planetary ball mill at room temperature for 10 h and annealed at 550 degrees C for 6 h. In all compositions m-ZrO2 transforms completely to nanocrystalline c-ZrO2 phase and MnO is fully incorporated into c-ZrO2 lattice. Rietveld's refinement technique is employed for detailed microstructure analysis by analyzing XRD patterns. High resolution transmission electron microscopy (HRTEM) analysis confirms the complete formation of c-ZrO2 phase. Presence of stoichiometric Mn in c-ZrO2 powder is confirmed by Electron Probe Microscopy analysis. XPS analysis reveals that Mn is mostly in Mn2+ oxidation state. A correlation between lattice parameter and oxygen vacancy is established. A detailed ionic conductivity measurement in the 250 degrees-575 degrees C temperature range describes the effect of MnO on conductivity of c-ZrO2. The ionic conductivity (s) of 30 mol% MnO alloyed ZrO2 at 550 degrees C is 0.04 s cm(-1). Electrical relaxation studies are carried out by impedance and modulus spectroscopy. Relaxation frequency is found to increase with temperature and MnO mol fraction. Electrical characterization predicts that these compounds have potentials for use as solid oxide fuel cell electrolyte material. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured FeAl intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Transmission electron microscopy (TEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential scanning calorimetry (DSC). Disordered Fe(Al) solid solution was formed at the early stage. After 30 h of milling, Fe(Al) solid solution transformed into an ordered FeAl phase. The average crystallite size reduction down to about 12 nm was accompanied by the introduction of the average lattice strain up to 1.7%. The TEM picture showed that the size of milled powders was less than 30 nm. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了一种基于粒子群算法优化(PSO)的模糊控制器,对模糊控制器参数进行全局优化,以弥补模糊控制器参数在线调节方面的不足,并应用于球磨机粉磨系统的控制中。控制系统采用粒子群优化模糊控制器作为双闭环控制中的成品流量控制器,并在Matlab/Simulink进行的仿真分析中实现模糊控制器参数的在线调节。仿真结果表明,系统较好地实现了给定参考轨迹自适应跟踪,具有鲁棒性强、控制精度高等优点。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Persilylation of nucleoside hydroxyls was effected in quantitative yields under solvent-free conditions using a ball mill. In addition, one-pot persilylation and acylation of cytidine was performed as an exemplar reaction demonstrating the utility of solvent-free approaches to nucleoside chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the use of ball milling to induce reactions between solids (mechanochemical synthesis) can provide lower-waste routes to chemical products by avoiding solvent during the reaction, there are further potential advantages in using one-pot multistep syntheses to avoid the use of bulk solvents for the purification of intermediates. We report here two-step syntheses involving formation of salen-type ligands from diamines and hydroxyaldehydes followed directly by reactions with metal salts to provide the corresponding metal complexes. Five salen-type ligands 2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]] bisphenol, ` salenH2', 1; 2,2'-[(+/-)-1,2-cyclohexanediylbis-[(E)-nitrilomethylidyne]] bis-phenol, 2; 2,2'-[1,2-phenylenebis( nitrilomethylidyne)]-bis-phenol, ` salphenH2' 3; 2-[[(2-aminophenyl) imino] methyl]-phenol, 4; 2,2'-[(+/-)-1,2-cyclohexanediylbis[(E)-nitrilomethylidyne]]-bis[4,6-bis(1,1-dimethylethyl)]-phenol, ` Jacobsen ligand', 5) were found to form readily in a shaker-type ball mill at 0.5 to 3 g scale from their corresponding diamine and aldehyde precursors. Although in some cases both starting materials were liquids, ball milling was still necessary to drive those reactions to completion because precipitation of the product and or intermediates rapidly gave in thick pastes which could not be stirred conventionally. The only ligand which required the addition of solvent was the Jacobsen ligand 5 which required 1.75 mol equivalents of methanol to go to completion. Ligands 1-5 were thus obtained directly in 30-60 minutes in their hydrated forms, due to the presence of water by-product, as free-flowing yellow powders which could be dried by heating to give analytically pure products. The one-armed salphen ligand 4 could also be obtained selectively by changing the reaction stoichiometry to 1 : 1. SalenH(2) 1 was explored for the onepot two-step synthesis of metal complexes. In particular, after in situ formation of the ligand by ball milling, metal salts (ZnO, Ni(OAc)2 center dot 4H(2)O or Cu(OAc)(2)center dot H2O) were added directly to the jar and milling continued for a further 30 minutes. Small amounts of methanol (0.4-1.1 mol equivalents) were needed for these reactions to run to completion. The corresponding metal complexes [M(salen)] (M = Zn, 6; Ni, 7; or Cu, 8) were thus obtained quantitatively after 30 minutes in hydrated form, and could be heated briefly to give analytically pure dehydrated products. The all-at-once ` tandem' synthesis of [Zn(salen)] 6 was also explored by milling ZnO, ethylene diamine and salicylaldehyde together in the appropriate mole ratio for 60 minutes. This approach also gave the target complex selectively with no solvent needing to be added. Overall, these syntheses were found to be highly efficient in terms of time and the in avoidance of bulk solvent both during the reaction and for the isolation of intermediates. The work demonstrates the applicability of mechanochemical synthesis to one-pot multi-step strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a small planetary ball mill, liquid-assisted grinding (LAG) of metal salts or oxides (ZnO, CdO, CdCO3, Cu(OAc)(2)center dot H2O, Co(OAc)(2)center dot 4H(2)O, Mn(OAc)(2)center dot 4H(2)O, Ni(OAc)(2)center dot 4H(2)O, FeSO4 center dot 7H(2)O) with two equivalents of isonicotinic acid (HINA) and small amounts of water ( up to 5.6 molar equivalents) gave discrete aquo complexes trans-[M(INA)(2)(OH2)(4)] (M = Zn, Cd, Cu, Fe, Co, Ni, Mn) efficiently within 30 min. For M = Zn, Cd and Cu these complexes readily undergo reversible formal dehydration to the extended network structures [M(INA)(2)] (M = Zn, Cu) or [Cd(INA)(2)(OH2)]center dot DMF by further LAG with non-aqueous liquids such as methanol or DMF. Overall, the mechanochemical dehydrations are more effective than heating or immersion in bulk solvents. The work demonstrates a two-step mechanochemical synthesis of coordination networks via discrete aquo complexes which may be preferable to single step reactions or grinding-annealing procedures in some cases. For example, the two step method was the only way to prepare [Cd(INA)(2)(OH2)]center dot DMF mechanochemically and the porous network Cu(INA)(2) could not be obtained from the aquo complex by heating.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Previously, it has been reported that molecular mobility determines the rate of molecular approach to crystal surfaces, while entropy relates to the probability of that approaching molecule having the desirable configuration for further growth of the existing crystal; and the free energy dictates the probability of that molecule not returning to the liquid phase1. If we plot the crystal growth rate and viscosity of a supercooled liquid in a log-log format, the relationship between the two is linear, indicating the influence viscosity has upon crystal growth rate. However, such approximation has been derived from pure drug compounds and it is apparent that further understanding of crystallization from drug-polymer solid dispersion is required in order to stabilise drugs embedded within amorphous polymeric solid dispersions. Methods Mixtures of felodipine and polymer (HPMCAS-HF, PVPK15 and Soluplus®) at specified compositions were prepared using a Restch MM200 ball mill. To examine crystal growth within amorphous solid dispersions, samples were prepared by melting 5-10 mg of ball milled mixture at 150°C for 3-5 minutes on a glass slip pre-cleaned with methanol and acetone. All prepared samples were confirmed to be crystal free by visual observation using a polarised light microscope (Olympus BX50). Prepared samples were stored at 0% RH (P2O5), inside desiccators, maintained in ovens at 80°C. For the dynamic viscosity measurement, approximately 100-200mg ball milled mixture was heated on the base plate of a rotational rheometer at 150°C for 5 minutes and the top plate was lowered to a defined gap to form a good contact with the material. The sandwiched amorphous material was heated to 80°C and the viscosity was measured. Results The equation was used to probe the correlation of viscosity to crystal growth rate. In comparison to the value of xi in log-log equation reported from pure drug compound, a value of 1.63 was obtained for FD-polymer solid dispersions irrespective of the polymer involved. &#8733 Conclusion The high xi value suggests stronger viscosity dependence may exist for amorphous FD once incorporated with amorphous polymer.