961 resultados para Bacillus-subtilis Spores


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL-1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1-0.2 mu m2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-1,3-1,4-Glucanases (E.C. 3.2.1.73) hydrolyze linked beta-D-glucans, such as lichenan and barley beta-glucan. Recombinant beta-1,3-1,4-glucanase from Bacillus subtilis expressed in Escherichia coil and purified by Ni-NTA chromatography exhibited optimum activity at 50 degrees C and pH 6.0. The catalytic half-life at 60 degrees C decreased from 90 to 5 min when the enzyme was incubated in the presence and absence of Ca(2+) respectively. The kinetic parameters of lichenan hydrolysis were 2695, 3.1 and 1220 for V(max) (mu mol/min/mg), K(m) (mg mL(-1)) and K(cat) (s(-1)), respectively. Analysis by DLS, AUC and SAXS demonstrated the enzyme is monomeric in solution. Chemical denaturation monitored by ITFE and far-UV CD yielded Delta G(H2O) values of 9.6 and 9.1 kcal/mol, respectively, showing that the enzyme has intermediate stability when compared with other Bacillus beta-1,3-1,4-glucanases. The crystal structure shows the anti-parallel jelly-roll beta-sheet conserved in all GH16 beta-1,3-1,4-glucanases, with the amino acid differences between Bacillus sp. enzymes that are likely determinants of stability being distributed throughout the protein. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendo por meta a padronização das variáveis influenciando a resistência de esporos empregados no controle do processo esterilizante por óxido de etileno, foram obtidos esporos de Bacillus subtilis var. niger, em meio sólido e líquido sintético de esporulação. Tais esporos, após padronização quantitativa dos 12 lotes obtidos, foram submetidos a exposições subletais como bioindicadores, tendo o papel como suporte. Construiu-se, então, a curva de letalidade característica de cada lote. A análise estatística empregada não evidenciou diferenças entre resistência dos 10 lotes obtidos em meio sólido e os 2 em meio líquido sintético, ressaltando-se a vantagem quanto ao rendimento que caracterizou a primeira metodologia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal of Bacteriology (Out 2010) 5312-5318

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbiology 154 (2008) 2719-2729

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal of Bacteriology (Nov 2007) 8371-8376

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic Acid Research (2007) Vol.37 N. 14 4755-4766

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in “Biology” at the Institute of Chemical and Biological Technology of the New University of Lisbon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plos Genetics, 5(7): ARTe1000566

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011