913 resultados para Bacillus halodurans


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proteinaceous crystal of Bacillus thuringiensis Var thuringiensis was found to enhance humoral immune response in rats and guinea pigs immunised with sheep red blood cells. The enhancement was due to the increased levels of both 19S and 7S antibodies in the sera of the treated animals. A novel synthesis of 7S haemolytic antibodies was observed in case of crystal treated animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (L-alanine-[2,3-epoxycyclohexano-4]-L-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of L-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize L-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to L-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guérin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice. Interestingly, expression of the Notch1 ligand Jagged1 was compromised in M. bovis bacillus Calmette-Guérin-stimulated iNOS(-/-) macrophages, and loss of Jagged1 expression or Notch1 signaling could be rescued by NO donors. Signaling perturbations or genetic approaches implicated that robust expression of MMP-9 or Hes1 required synergy and cross talk between TLR2 and canonical Notch1-PI3K cascade. Further, CSL/RBP-Jk contributed to TLR2-mediated expression of MMP-9 or Hes1. Correlative evidence shows that, in a murine model for CNS tuberculosis, this mechanism operates in vivo only in brains derived from WT but not from iNOS(-/-) mice. Importantly, we demonstrate the activation of Notch1 signaling in vivo in granulomatous lesions in the brains of Mycobacterium tuberculosis-infected human patients with tuberculous meningitis. Current investigation identifies NO as a pathological link that modulates direct cooperation of TLR2 with Notch1-PI3K signaling or Jagged1 to regulate specific components of TLR2 responses. These findings provide new insights into mechanisms by which Notch1, TLR2, and NO signals are integrated in a cross talk that modulates a defined set of effector functions in macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of l-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially l-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Cα proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the λmax value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Cα and Cβ of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Cα proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Cα proton abstraction by SHMT is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and etrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and etrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the except for significant changes at Q53, Y60 and Y61. The wild-type enzyme, carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-depen dent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of C beta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gemdiamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.