906 resultados para Bacillus (bacterium)
Resumo:
AIM: To investigate the effect of repeated culture in a rich medium on certain genetic, metabolic, pathogenic and structural characteristics of fresh isolates of Bacillus thuringiensis. METHODS AND RESULTS: Four strains of B. thuringiensis, which had been isolated in vegetative form from leaf surfaces, were grown for 500 generations in batch culture in a rich medium. One of the strains, S4g, differed from the parent in the following respects: greater cell width; changed plasmid profile; complete loss of ability to produce delta-endotoxins; loss of ability to produce beta-exotoxin and disruption of vip3 gene; radically different fatty acid composition; and altered metabolic activity. Two of the other evolved strains (S1g and S6g) showed differences in fatty acid profiles compared with the parents. Genetic finger-printing showed that there were also mutations in the cry genes of two of the evolved strains (S1g and S2g). The delta-endotoxins of strain S6g were significantly less toxic to the larvae of Pieris brassica compared with those of the parent and it also differed in the plasmid content. CONCLUSION: Radical and unpredictable changes can occur in fresh isolates of B. thuringiensis when subjected to growth in the laboratory. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first analysis of a Gram positive and biotechnologically significant bacterium after repeated laboratory culture. It is of great relevance to the biotechnological exploitation of B. thuringiensis that prolonged growth of environmental isolates on laboratory culture media can have profound effects on their structure, genome and virulence determinants.
Resumo:
Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix.
Resumo:
Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic "cap" region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community.
Resumo:
Dissertation presented to obtain the Ph.D. degree in “Biology” at the Institute of Chemical and Biological Technology of the New University of Lisbon
Resumo:
In dual cultures, the supernatant filtrate of the biological control agent Bacillus subtilis was evaluated against (Fusarium oxysporum f.sp. lentis) the causal organism of lentil vascular wilt. The antagonistic activity was evaluated as percent reduction of fungal growth (certainly due, in part, to the antifungal metabolites produced by the antagonistic bacterium). The in-vitro experiments showed that B. subtilis filtrate, whether solid or liquid media, had a strong inhibiting activity on the spore germination and mycelial growth of F. oxysporum f. sp. lentis. In a glasshouse experiment, soil was drenched with B. subtilis filtrate at 30 ml/kg (vol/wt) around seedlings of a susceptible lentil line (ILL 4605). In this treatment there was only 31% mortality compared with 100% kill of plants in the control treatment (P≤0.05).
Resumo:
Probiotics are live microbial feed additions that improve human or animal health. Their activities are towards improving the composition of the gastrointestinal microbiota in a manner that reduces the risk of disorder. In some cases, probiotics are also used therapeutically. Most probiotics use lactobacilli or bifidobacteria as the main constituents. These produce lactic acid as well as other anti-pathogenic attributes. Traditionally, probiotics are incorporated in dairy products (yoghurts or fermented drinks) or in lyophilised form. Because of stability and viability factors, heated products are not usually a target for probiotic use. This is because they are temperature sensitive. However, a spore-forming genus would have the ability to overcome this limitation. Here, we discuss evidence for the spore-forming Gram-positive bacterium Bacillus coagulans as a probiotic.
Resumo:
A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Em anos recentes, surgiram numerosos casos de intoxicação alimentar envolvendo patógenos emergentes. Estes casos levaram a um aumento da preocupação com a preservação dos alimentos minimamente processados e com a segurança alimentar. Este fato está induzindo a pesquisa por inibidores para estes patógenos e fatores para prolongar a vida de prateleira de produtos alimentícios. Entre as novas alternativas na preservação está a utilização de peptídeos antimicrobianos produzidos por bactérias. No presente trabalho uma bactéria identificada como Bacillus amyloliquefaciens LBM 5006 isolada de solos de mata Atlântica de Santa Catarina foi selecionada dentre outros microrganismos e sua capacidade de produzir antimicrobianos foi avaliada. O extrato bruto da cultura do isolado LBM 5006 foi caracterizado, sendo ativo contra importantes bactérias patogênicas e deteriorantes como Listeria monocytogenes, Bacillus cereus, Erwinia carotovora, Escherichia coli, dentre outras. Houve maior produção do antimicrobiano quando a bactéria foi propagada em caldo infusão de cérebro e coração (BHI) a 37o C durante 48 h. Após concentração, a atividade antimicrobiana resistiu ao tratamento com enzimas proteolíticas. A atividade antimicrobiana foi verificada em pHs ácidos, sendo inibida em pH 9 e 10. O extrato foi purificado por meio de cromatografia de gel filtração e extração com butanol. O teste qualitativo de ninidrina, juntamente com a espectroscopia de infravermelho e ultravioleta, feitos com a substância purificada revelou que o antimicrobiano possui natureza protéica. O antimicrobiano apresentou um efeito bacteriostático contra 106 UFC/mL de Listeria monocytogenes na concentração de 25 AU/ml.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper was to evaluate the biological aspects of Plutella xylostella and Trichogramma pretiosum in eggs of the F2 generation of P. xylostella under the influence of Bacillus thuringiensis in laboratory conditions. The experiment was conducted in the Laboratorio de Biologia and Criacao de Insetos of Faculdade de Ciencias Agrarias e Veterinarias de Jaboticabal - UNESP reen collars contaminated with strains and commercial product based on B. thuringiensis in the laboratory. The eggs obtained from the F2 generation of P. xylostella evaluated the biological parameters of T. pretiosum. It was observed that some biological characteristics of P. xylostella showed changes by the treatment with B. thuringiensis. The viability of the larvae and pupae stages, pupae weight were the biological parameters more influenced by treatments, with values significantly reduced when compared to control. However, the larvae length and pupae stages and sex ratio were similar in all treatments, with no significant biological variations. Thus, this bacterium isolated from this behavior may provide greater exposure of larvae to other natural enemies as well as generation of adults less viable, which makes them potential programs in pest control, since the interaction of the methods of control is one of the main ways to enhance the biological control of insect pests. It was observed sublethal effects on P. xylostella biology, and B. thuringiensis negative influence on the parasitism capacity and emergency of T. pretiosum.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The survival and conjugation ability of sporogenic and asporogenic Bacillus thuringiensis strains were investigated in broth, in non-amended sterile clay soil monoculture and in mixed soil culture. The 75 kb pHT73 plasmid carrying an erythromycin resistance determinant and a cry1Ac gene was transferred in mating broth and soil microcosm. Survival of strains was assessed in soil monoculture and in mixed soil culture for up to 20 days. Sporogenic strains rapidly formed viable spores which were maintained until the end of the experiment. The asporogenic strains were no longer recovered after 8 days of incubation. This study shows that the environmental impact of asporogenic B. thuringiensis strains is lower than that of sporogenic B. thuringiensis strains. Thus, the use of asporogenic strains may significantly reduce any potential risk (gene transfer, soil and plant contamination) due to the dissemination of B. thuringiensis-based biopesticides in the environment. Copyright (C) 2000 Federation of European Microbiological Societies.