31 resultados para BWR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the 60s to the 90s, a great number of events related to the Emergency Core Cooling Systems Strainers have been happened in all kind of reactors all over the world. Thus, the Nuclear Regulatory Commission of the USA emitted some Bulletins to address the concerns about the adequacy of Emergency Core Cooling Systems (ECCS) strainer performance at boiling water reactors (BWR). In Spain the regulatory body (Consejo de Seguridad Nuclear, CSN) adopted the USA regulation and Cofrentes NPP installed new strainers with a considerable bigger size than the old strainers. The nuclear industry conducted significant and extensive research, guidance development, testing, reviews, and hardware and procedure changes during the 90s to resolve the issues related to debris blockage of BWR strainers. In 2001 the NRC and CSN closed the Bulletins. Thereafter, the strainers issues were moved to the PWR reactors. In 2004 the NRC issued a Generic Letter (GL). It requested the resolution of several effects which were not noted in the past. The GL regarded to be resolved by the PWR reactors but the NRC in USA and the CSN in Spain have requested that the BWR reactors investigate differences between the methodologies used by the BWRs and PWRs. The developments and improvements done for Cofrentes NPP are detailed. Studies for this plant show that the head loss due to the considered debris is at most half of the limited head loss for the ECCS strainer and the NPSH (Net Positive Suction Head) required for the ECCS pumps is at least three times lower than the NPSH available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questo elaborato ha lo scopo di esporre quelli che sono i vantaggi derivanti dall' utilizzo degli acciai inossidabili, specificando il tipo di componente e le ragioni della scelta, nei sistemi per la produzione di energia: dalle turbine, agli impianti nucleari, fino agli impianti che sfruttano le energie alternative (solare, eolica, geotermica, biogas). Inizialmente viene fornito un quadro generale sui differenti tipi di acciai inox (martensitici, ferritici, austenitici e duplex, con le relative proprietà, sottolineandone vantaggi e svantaggi), descrivendone anche i sistemi di designazione, con particolare attenzione alla norma AISI (American Iron and Steel Institute). Una volta messe in risalto queste caratteristiche, vengono esaminati e descritti diversi sistemi di produzione di energia in cui gli acciai inox trovano applicazione: si parte dalle turbine (idraulica, a vapore e a gas), spiegando i benefici nell'utilizzo di particolari categorie di acciai inox nella realizzazione di alcuni dei componenti per questi impianti. Vengono quindi esaminati gli impianti nucleari, partendo da quelli che utilizzano come moderatore e fluido refrigerante acqua naturale, ("PWR", Pressurized Water Reactor) e ("BWR", Boiling Water Reactor), fino a quelli che utilizzano invece acqua pesante ("CANDU", Canadian Deuterium Uranium Reactor), nonchè i reattori veloci ("FBR", Fast Breeding Reactor). Infine, vengono esaminate le applicazioni degli acciai inox, nei sistemi per la produzione di energia che, sfruttano fonti alternative (elencate in precedenza).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precipitation morphology and habit planes of the delta-phase Zr hydrides, which were precipitated within the a-phase matrix grains and along the grain boundaries of recrystallized Zircaloy-2 cladding tube, have been examined by electron backscatter diffraction (EBSD). Radially-oriented hydrides, induced by residual tensile stress, precipitated in the outside region of the cladding, and circumferentially-oriented hydrides in the stress-free middle region of the cladding. The most common crystallographic relationship for both types of the hydrides precipitated at the inter- and intra-granular sites was identical at (0001)(alpha) // {111}(delta), with {1017}(alpha) // {111}(delta) being the occasional exception only for the inter-granular radial hydrides. When tensile stress was loaded, the intra-granular hydrides tended to preferentially precipitate in the grains with circumferential basal pole textures. The inter-granular hydrides tended to preferentially precipitate on the grain faces opposite to tensile axis. The change of prioritization in the precipitation sites for the hydrides due to tensile stress could be explained in terms of the relaxation effect of constrained elastic energy on the terminal solid solubility of hydrogen at hydride precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current presentation the basic concepts for CFD modelling are described and feasibility studies are presented. On the example of a complex flow situation at plunging jet conditions the model capabilities are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris transport, sedimentation, penetration into the reactor core and head loss build up becomes important to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during loss of coolant accidents. Research projects are being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Helmholtz-Zentrum Dresden-Rossendorf. The projects include experimental investigations of different processes and phenomena of insulation debris in coolant flow and the development of CFD models. Generic complex experiments serve for building up a data base for the validation of models for single effects and their coupling in CFD codes. This paper includes the description of the experimental facility for complex generic experiments (ZSW), an overview about experimental boundary conditions and results for upstream and down-stream phenomena as well as for the long-time behaviour due to corrosive processes. © Carl Hanser Verlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the presentation the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Gorlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Gorlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented. Copyright © 2008 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented. © Carl Hanser Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD-modeling are described and feasibility studies including the conceptual design of the experiments are presented. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. Whereas the paper Alt et al. is focused on the experiments in the present paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La línea de cálculo de INVAP consiste principalmente de los códigos CONDOR y CITVAP. Este último es la versión mejorada del código CITATION II que resuelve la ecuación de difusión neutrónica multigrupo por el método de diferencias finitas. CITVAP es ampliamente usado para estudiar reactores de investigación y reactores de potencia tales como PWR, BWR, VVER y últimamente se implemento nuevas funciones para estudiar una central PHWR tipo Atucha. Siguiendo con la línea de reactores PHWR, en este trabajo se estudian las capacidades y deficiencias del código de núcleo CITVAP para modelar una central nuclear tipo CANDU. Se plantean mejoras a realizar para un manejo mas eficiente desde el punto de vista del usuario, tanto de la gestión de combustibles, movimientos de barras de control y zonas líquidas como mejoras en el modelo termohidraulico. La metodología consiste en validar la línea de cálculo de INVAP, contrastando los resultados con el benchmark IAEA-tecdoc-887. El proceso de validación consiste en cálculos de celda en dos y tres dimensiones usando los códigos CONDOR y SERPENT respectivamente, obtención de secciones eficaces macroscópicas en función del quemado y cálculos de núcleo para distintas configuraciones de los dispositivos de control usando un núcleo fresco y una distribución de quemado en equilibrio. Se analizan las dificultades que se presentan al modelar el núcleo con las capacidades actuales del código y se plantean posibles soluciones a implementar. Para un estudio completo de un reactor CANDU, se estudian tres de la características distintivas de este tipo de reactor: la termohidraulica, la gestión de combustibles y los dispositivos de control de reactividad, distribución de potencia y apagado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La línea de cálculo de INVAP consiste principalmente de los códigos CONDOR y CITVAP. Este último es la versión mejorada del código CITATION II que resuelve la ecuación de difusión neutrónica multigrupo por el método de diferencias finitas. CITVAP es ampliamente usado para estudiar reactores de investigación y reactores de potencia tales como PWR, BWR, VVER y últimamente se implemento nuevas funciones para estudiar una central PHWR tipo Atucha. Siguiendo con la línea de reactores PHWR, en este trabajo se estudian las capacidades y deficiencias del código de núcleo CITVAP para modelar una central nuclear tipo CANDU. Se plantean mejoras a realizar para un manejo mas eficiente desde el punto de vista del usuario, tanto de la gestión de combustibles, movimientos de barras de control y zonas líquidas como mejoras en el modelo termohidraulico. La metodología consiste en validar la línea de cálculo de INVAP, contrastando los resultados con el benchmark IAEA-tecdoc-887. El proceso de validación consiste en cálculos de celda en dos y tres dimensiones usando los códigos CONDOR y SERPENT respectivamente, obtención de secciones eficaces macroscópicas en función del quemado y cálculos de núcleo para distintas configuraciones de los dispositivos de control usando un núcleo fresco y una distribución de quemado en equilibrio. Se analizan las dificultades que se presentan al modelar el núcleo con las capacidades actuales del código y se plantean posibles soluciones a implementar. Para un estudio completo de un reactor CANDU, se estudian tres de la características distintivas de este tipo de reactor: la termohidraulica, la gestión de combustibles y los dispositivos de control de reactividad, distribución de potencia y apagado.