988 resultados para BUS RAPID TRANSIT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bus Rapid Transit (BRT), because of its operational flexibility and simplicity, is rapidly gaining popularity with urban designers and transit planners. Earlier BRTs were bus shared lane or bus only lane, which share the roadway with general and other forms of traffic. In recent time, more sophisticated designs of BRT have emerged, such as busway, which has separate carriageway for buses and provides very high physical separation of buses from general traffic. Line capacities of a busway are predominately dependent on bus capacity of its stations. Despite new developments in BRT designs, the methodology of capacity analysis is still based on traditional principles of kerbside bus stop on bus only lane operations. Consequently, the tradition methodology lacks accounting for various dimensions of busway station operation, such as passenger crowd, passenger walking and bus lost time along the long busway station platform. This research has developed a purpose made bus capacity analysis methodology for busway station analysis. Extensive observations of kerbside bus stops and busway stations in Brisbane, Australia were made and differences in their operation were studied. A large scale data collection was conducted using the video recording technique at the Mater Hill Busway Station on the South East Busway in Brisbane. This research identified new parameters concerning busway station operation, and through intricate analysis identified the elements and processes which influence the bus dwell time at a busway station platform. A new variable, Bus lost time, was defined and its quantitative descriptions were established. Based on these finding and analysis, a busway station platform bus capacity methodology was developed, comprising of new models for busway station lost time, busway station dwell time, busway station loading area bus capacity, and busway station platform bus capacity. The new methodology not only accounts for passenger boarding and alighting, but also covers platform crowd and bus lost time in station platform bus capacity estimation. The applicability of this methodology was shown through demonstrative examples. Additionally, these examples illustrated the significance of the bus lost time variable in determining station capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Mass Transit Systems are an initiative of the Colombian Government to replicate the experience of Bogota’s Bus Rapid Transit System —Transmilenio— in large urban areas of the country, most of them over municipal perimeters to provide transportation services to areas undergoing a metropolization process. Management of these large scale metropolitan infrastructure projects involves complex setups that present new challenges in the interaction between stakeholders and interests between municipalities, tiers of government and public and private sectors. This article presents a compilation of the management process of these projects from the national context, based on a document review of the regulatory framework, complemented by interviews with key stakeholders at the national level. Research suggests that the implementation of large-scale metropolitan projects requires a management framework orientated to overcome the traditional tensions between centralism and municipal autonomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed model is constrained by three different kinds of flow conditions. These constraints will yield a network that provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The paper includes computational experiments which show how the introduction of robustness influences network design

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the railway rolling stock circulation problem in rapid transit networks, in which frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The main complicating issue is the fact that the available capacity at depot stations is very low, and both capacity and rolling stock are shared between different train lines. This forces the introduction of empty train movements and rotation maneuvers, to ensure sufficient station capacity and rolling stock availability. However, these shunting operations may sometimes be difficult to perform and can easily malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operation will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Critic trains, defined as train services that come through stations that have a large number of passengers arriving at the platform during rush hours, are also introduced. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results of the model, achieved in approximately 1 min, have been received positively by RENFE planners

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to propose an integrated planning model to adequate the offered capacity and system frequencies to attend the increased passenger demand and traffic congestion around urban and suburban areas. The railway capacity is studied in line planning, however, these planned frequencies were obtained without accounting for rolling stock flows through the rapid transit network. In order to provide the problem more freedom to decide rolling stock flows and therefore better adjusting these flows to passenger demand, a new integrated model is proposed, where frequencies are readjusted. Then, the railway timetable and rolling stock assignment are also calculated, where shunting operations are taken into account. These operations may sometimes malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operations will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Swapping operations will also be ensured using homogeneous rolling stock material and ensuring parkings in strategic stations. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results show that through this integrated approach a greater robustness degree can be obtained

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The previous circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between the different lines, force the introduction of empty trains and a careful control on shunting operation. In practice the future demand is generally unknown and the decisions must be based on uncertain forecast. We have developed a stochastic rolling stock formulation of the problem. The computational experiments were developed using a commercial line of the Madrid suburban rail network operated by RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained by deterministic scenarios and stochastic approach some useful conclusions may be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il sistema di trasporto detto Bus Rapid Transit (BRT) è stato lanciato a Curitiba, in Brasile, nel 1974 per offrire un trasporto in bus efficiente ed efficace nella città in rapida espansione. Questa sperienza, insieme a quella di Ottawa (1983) e Quito (1994) ha dimostrato di essere una soluzione molto efficiente per il trasporto di massa. Per tutta l’Europa si sono iniziate a sviluppare esperienze simili, introducendo però un concetto diverso per quanto riguarda la qualità di servizio. Infatti sistemi come il “trunk network” nella Svezia, il Metrobus nella Germania oppure il BHNS (Bus à Aut. Niveau de Service) nella Francia trattano la qualità di servizio da una prospettiva più ampia che il BRT, dato che considerano aspetti come l’immagine ed il comfort oltre che velocità, frequenza e affidabilità. Questi nuovi sistemi BHLS (Buses with a High Quality of Service) consentono di combinare la qualità di servizio del tram con il costo basso e l’altà flessibilità dei sistema bus, fornendo soluzioni molto interessanti in termini di accessibilità e livelli di servizio, che permettono l’adattamento ai differenti contesti urbani (dimensione, popolazione, densità, ecc.). This article compares different European experiences with tramways and BHLS, especially from the economic point of view, considering their respective costs, benefits and advantages altogether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the disruption management problem of rapid transit rail networks. Besides optimizing the timetable and the rolling stock schedules, we explicitly deal with the effects of the disruption on the passenger demand. We propose a two-step approach that combines an integrated optimization model (for the timetable and rolling stock) with a model for the passengers’ behavior. We report our computational tests on realistic problem instances of the Spanish rail operator RENFE. The proposed approach is able to find solutions with a very good balance between various managerial goals within a few minutes. Se estudia la gestión de las incidencias en redes de metro y cercanías. Se optimizan los horarios y la asignación del material rodante, teniendo en cuenta el comportamiento de los pasajeros. Se reallizan pruebas en varias líneas de la red de cercanías de Madrid, con resultados satisfactorios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the design of railway timetables considering a variable elastic demand profile along a whole design day. Timetabling is the third stage in the classical hierarchical railway planning process. Most of previous works on this topic consider a uniform demand behavior for short planning intervals. In this paper, we propose a MINLP model for designing non-periodic timetables on a railway corridor where demand is dependent on waiting times. In the elastic demand case, long waiting times lead to a loss of passengers, who may select an alternative transportation mode. The mode choice is modeled using two alternative methods. The first one is based on a sigmoid function and can be used in case of absence of information for competitor modes. In the second one, the mode choice probability is obtained using a Logit model that explicitly considers the existence of a main alternative mode. With the purpose of obtaining optimal departure times, in both cases, a minimization of the loss of passengers is used as objective function. Finally, as illustration, the timetabling MINLP model with both mode choice methods is applied to a real case and computational results are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Performing organization: San Francisco Bay Area Rapid Transit District"--Technical report documentation page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction by T.C. Clarke, O. Chanute, and J.H. Linville.