943 resultados para BREAST-CANCER CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (SPP), a bioactive sphingolipid metabolite, inhibits chemoinvasiveness of the aggressive, estrogen-independent MDA-MB-231 human breast cancer cell line. As in many other cell types, SPP stimulated proliferation of MDA-MB-231 cells, albeit to a lesser extent. Treatment of MDA-MB-231 cells with SPP had no significant effect on their adhesiveness to Matrigel, and only high concentrations of SPP partially inhibited matrix metalloproteinase-2 activation induced by Con A. However, SPP at a concentration that strongly inhibited invasiveness also markedly reduced chemotactic motility. To investigate the molecular mechanisms by which SPP interferes with cell motility, we examined tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important for organization of focal adhesions and cell motility. SPP rapidly increased tyrosine phosphorylation of FAK and paxillin and of the paxillin-associated protein Crk. Overexpression of FAK and kinase-defective FAK in MDA-MB-231 cells resulted in a slight increase in motility without affecting the inhibitory effect of SPP, whereas expression of FAK with a mutation of the major autophosphorylation site (F397) abolished the inhibitory effect of SPP on cell motility. In contrast, the phosphoinositide 3'-kinase inhibitor, wortmannin, inhibited chemotactic motility in both vector and FAK-F397- transfected cells. Our results suggest that autophosphorylation of FAK on Y397 may play an important role in SPP signaling leading to decreased cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current understanding of the regulation of breast cancer cell proliferation and invasiveness by hormones and growth factors is reviewed. It has been shown that polypeptide growth factors are involved in hormone-independent breast cancer, and are sometimes oestrogen-regulated in hormone-responsive models. Basement-membrane invasiveness, relating to the metastatic potential of these cells, is also stimulated by oestrogen in hormone-dependent models, elevated in hormone-independent models, and is growth factor sensitive. Further understanding of the differential effects of growth factors on breast cancer cell proliferation and invasiveness should facilitate better therapeutic exploitation of regulation at this level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated a series of sublines of the hormone-dependent MCF-7 human breast cancer cell line after selection both in vivo and in vitro for growth in the presence of subphysiological concentrations of estrogens. These sublines represent a model system for study of the processes leading to hormonal autonomy. The cells form growing tumors in ovariectomized athymic nude mice in the absence of estrogen supplementation but retain some responsivity to estrogen as determined by stimulation of the rate of tumor growth in vivo and by induction of progesterone receptor. An ovarian-independent but hormone-responsive phenotype may occur early in the natural progression to hormone-independent and unresponsive growth in breast cancer. We observed no change in the affinity or decrease in the level of expression of estrogen receptors and progesterone receptors among the sublines and the parental cells. Epidermal growth factor receptors are not overexpressed in ovarian-independent cells. Thus, altered hormone receptor expression may be a late event in the acquisition of a hormone-independent and unresponsive phenotype. Sublines isolated by in vivo but not in vitro selection are more invasive than the parental cells both in vivo and across an artificial basement membrane in vitro. Thus, as yet unknown tumor-host interactions may be important in the development of an invasive phenotype. Furthermore, acquisition of the ovarian-independent and invasive phenotypes can occur independently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of αVβ3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing β3 integrin status. Overexpression of β3 integrin caused increased cell surface expression of αV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. β3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, αVβ3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of β3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with β3 integrin expression. Although our studies confirm important biological effects of αVβ3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, β3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by αVβ3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactivities of peel and flesh extracts of 3 genetically diverse mango (Mangifera indica L.) varieties were studied. Nam Doc Mai peel extracts, containing the largest amounts of polyphenols, were associated with an effect on MCF-7 viable cell numbers with an IC50 (dose required for 50% inhibition of cell viability) of 56 μg/mL and significantly (p<0.01) induced cell death in MDA-MB-231 cells, compared with other varieties. Hydrophilic fractions of Nam Doc Mai peel extracts had the highest bioactivity values against both MCF-7 and MDA-MB-231 cells. Soluble polyphenols were present in the largest amounts in most hydrophilic fractions. The Nam Doc Mai mango variety contains high levels of fruit peel bioactivity, which appears to be related to the nature of the polyphenol composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging evidence suggests that cancers arise in stem/progenitor cells. Yet, the requirements for transformation of these primitive cells remains poorly understood. In this study, we have exploited the `mammosphere' system that selects for primitive mammary stem/progenitor cells to explore their potential and requirements for transformation. Introduction of Simian Virus 40 Early Region and hTERT into mammosphere-derived cells led to the generation of NBLE, an immortalized mammary epithelial cell line. The NBLEs largely comprised of bi-potent progenitors with long-term self-renewal and multi-lineage differentiation potential. Clonal and karyotype analyses revealed the existence of heterogeneous population within NBLEs with varied proliferation, differentiation and sphere-forming potential. Significantly, injection of NBLEs into immunocompromised mice resulted in the generation of invasive ductal adenocarcinomas. Further, these cells harbored a sub-population of CD44(+)/CD24(-) fraction that alone had sphere- and tumor-initiating potential and resembled the breast cancer stem cell gene signature. Interestingly, prolonged in vitro culturing led to their further enrichment. The NBLE cells also showed increased expression of stemness and epithelial to mesenchymal transition markers, deregulated self-renewal pathways, activated DNA-damage response and cancer-associated chromosomal aberrations-all of which are likely to have contributed to their tumorigenic transformation. Thus, unlike previous in vitro transformation studies that used adherent, more differentiated human mammary epithelial cells our study demonstrates that the mammosphere-derived, less-differentiated cells undergo tumorigenic conversion with only two genetic elements, without requiring oncogenic Ras. Moreover, the striking phenotypic and molecular resemblance of the NBLE-generated tumors with naturally arising breast adenocarcinomas supports the notion of a primitive breast cell as the origin for this subtype of breast cancer. Finally, the NBLEs represent a heterogeneous population of cells with striking plasticity, capable of differentiation, self-renewal and tumorigenicity, thus offering a unique model system to study the molecular mechanisms involved with these processes. Oncogene (2012) 31, 1896-1909; doi:10.1038/onc.2011.378; published online 29 August 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Methodology/Principal Findings: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration-and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. Conclusions/Significance: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Bmi1 polycomb ring finger oncogene, a transcriptional repressor belonging to the Polycomb group of proteins plays an important role in the regulation of stem cell self-renewal and is elevated in several cancers. In the current study, we have explored the role of Bmi1 in regulating the stemness and drug resistance of breast cancer cells. Methods: Using real time PCR and immunohistochemistry primary breast tissues were analyzed. Retro-and lentiviruses were utilized to overexpress and knockdown Bmi1, RT-PCR and Western blot was performed to evaluate mRNA and protein expression. Stemness properties were analyzed by flow cytometry and sphere-formation and tumor formation was determined by mouse xenograft experiments. Dual luciferase assay was employed to assess promoter activity and MTT assay was used to analyze drug response. Results: We found Bmi1 overexpression in 64% of grade III invasive ductal breast adenocarcinomas compared to normal breast tissues. Bmi1 overexpression in immortalized and transformed breast epithelial cells increased their sphere-forming efficiency, induced epithelial to mesenchymal transition ( EMT) with an increase in the expression of stemness-related genes. Knockdown of Bmi1 in tumorigenic breast cells induced epithelial morphology, reduced expression of stemness-related genes, decreased the IC50 values of doxorubicin and abrogated tumor-formation. Bmi1-high tumors showed elevated Nanog expression whereas the tumors with lower Bmi1 showed reduced Nanog levels. Overexpression of Bmi1 increased Nanog levels whereas knockdown of Bmi1 reduced its expression. Dual luciferase promoter-reporter assay revealed Bmi1 positively regulated the Nanog and NF kappa B promoter activity. RT-PCR analysis showed that Bmi1 overexpression activated the NF kappa B pathway whereas Bmi1 knockdown reduced the expression of NF kappa B target genes, suggesting that Bmi1 might regulate Nanog expression through the NF kappa B pathway. Conclusions: Our study showed that Bmi1 is overexpressed in several high-grade, invasive ductal breast adenocarcinomas, thus supporting its role as a prognostic marker. While Bmi1 overexpression increased self-renewal and promoted EMT, its knockdown reversed EMT, reduced stemness, and rendered cells drug sensitive, thus highlighting a crucial role for Bmi1 in regulating the stemness and drug response of breast cancer cells. Bmi1 may control self-renewal through the regulation of Nanog expression via the NF kappa B pathway.