991 resultados para BLUE EMISSION
Resumo:
Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980nm excitation are investigated. Intense blue emission centered at 476nm, corresponding to (1)G(4) -> H-3(6) transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense TM3+ up- conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New observations on the luminescence Of In2S3 and europium-doped In2S3 nanoparticles show a green (5 10 nm) emission from In2S3 and In1.8Eu0.2S3 nanoparticles while a blue (425 nm) emission is observed from ln(1.6)Eu(0.4)S(3) nanoparticles. Both the blue and green emissions have large Stokes shifts of 62 and 110 nm, respectively. Excitation with longer-wavelength photons causes the blue emission to shift to a longer wavelength while the green emission wavelength remains unchanged. The lifetimes of both the green and blue emissions are similar to reported values for excitonic recombination. When doped with Eu3+, in addition to the broad blue and green emissions, a red emission near 615 nm attributed to Eu3+ is observed. Temperature dependences on nanoparticle thin films indicate that with increasing temperature, the green emission wavelength remains constant, however, the blue emission shifts toward longer wavelengths. Based on these observations, the blue emission is attributed to exciton recombination and the green emission to Indium interstitial defects. These nanoparticles show full-color emission with high efficiency, fast lifetime decays, and good stability; they are also relatively simple to prepare, thus making them a new type of phosphor with potential applications in lighting, flat-panel displays, and communications.
Resumo:
Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
A star-like white light-emitting polymer with an orange emissive core and four blue emissive arms is designed and synthesized. White electroluminescence is observed with simultaneous orange emission from the core and blue emission from the arms. A single-layer device based on this polymer emits white light with CIE coordinates of (0.35, 0.39) and a luminous efficiency of 7.06 cd A(-1).
Resumo:
We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.
Resumo:
Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+.
Resumo:
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.
Resumo:
Nanocyrstalline LaGaO3 and Dy3+- and Eu3+-doped LaGaO3 were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveals that the samples begin to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FE-SEM images indicate that the Dy3+- and Eu3+-doped LaGaO3 samples are both composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the undoped LaGaO3 sample shows a strong blue emission peaking at 433 nm, and the Dy3+- and Eu3+-doped LaGaO3 samples show their characteristic emissions of Dy3+ (F-4(9/2)-H-6(15/2) and F-4(9/2)-H-6(13/2) transitions) and Eu3+ (D-5(0,1,2)-F-7(1,2,3,4) transitions), respectively. The relevant luminescence mechanisms are discussed.
Resumo:
A novel wide-bandgap conjugated polymer (PDHFSCHD) consisting of alternating dihexylfluorene and rigidly twisted biphenyl units has been synthesized. The new fluorene-based copolymer composed of rigid twisting segments in the main-chain exhibits an optical bandgap of as high as 3.26 eV, and a highly efficient ultraviolet emission with peaks at 368 nm and 386 nm. An electroluminescence device from PDHFSCHD neat film as an active layer shows UV emission which peaks at 395 nm with a turn on voltage below 8 V By optimizing the device conditions, a peak EL quantum efficiency of 0.054% and brightness of 10 cd.m(-2) was obtained. Furthermore, blending a poly(dihexylfluorene) in the PDHFSCHD host gave pure blue emission peaking at 417 nm, and 440 nm without long wavelength emission from aggregated species. Efficient energy transfer from PDHFSCHD to PDHF was demonstrated in these blended systems. Depressed chain-aggregation of PDHF in the PDHFSCHD host can correspond to pure blue emission behaviors.
Resumo:
We report the energy-transfer mechanisms and emission quantum yield measurements of sol-gel-derived Eu3+-based nanohybrids. The matrix of these materials, classified as diureasils and termed U(2000) and U(600), includes urea cross-links between a siliceous backbone and polyether-based segments of two molecular weights, 2000 and 600, respectively. These materials are full-color emitters in which the Eu3+ (5)Do --> F-7(0-4) lines merge with the broad green-blue emission of the nanoscopic matrix's backbone. The excitation spectra show the presence of a large broad band (similar to 27000-29000 cm(-1)) undoubtedly assigned to a ligand-to-metal charge-transfer state. Emission quantum yields range from 2% to 13.0% depending on the polymer molecular weight and Eu3+ concentration. Energy transfer between the hybrid hosts and the cations arises from two different and independent processes: the charge-transfer band and energy transfer from the hybrid's emitting centers. The activation of the latter mechanisms induces a decrease in the emission quantum yields (relative to undoped nanohybrids) and permits a fine-tuning of the emission chromaticity across the Comission Internacionalle d'Eclairage diagram, e.g., (x, y) color coordinates from (0.21, 0.24) to (0.39, 0.36). Moreover, that activation depends noticeably on the ion local coordination. For the diureasils with longer polymer chains, energy transfer occurs as the Eu3+ coordination involves the carbonyl-type oxygen atoms of the urea bridges, which are located near the hybrid's host emitting centers. on the contrary, in the U(600)-based diureasils, the Eu3+ ions are coordinated to the polymer chains, and therefore, the distance between the hybrid's emitting centers and the metal ions is large enough to allow efficient energy-transfer mechanisms.
Resumo:
Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, Eu(III) and Eu(II) doped gadolinium silicates has been obtained as compact tubes starting from spherical gadolinium hydroxide carbonate using the pores of silica matrix as support and its surface as reagent. Eu(III) doped gadolinium silicate with hexagonal phase shows an interesting visible shifted charge transfer band when compared to disilicate with orthorhombic phase that was also obtained. Eu(II) gadolinium silicate has been prepared using CO atmosphere presenting an intense blue emission. The divalent europium system shows a potential application as an UV-blue converter. The samples were characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD) and photoluminescence spectroscopy. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We report the observation of intense frequency up-conversion in Nd3+-doped fluoroindate glasses pumped by the second harmonic of a cw mode-locked Nd: YAG laser. Mechanisms for generating the observed emissions are discussed.
Resumo:
We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.